
 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)
Recognized under 2(f) and 12 (B) of UGC ACT 1956

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, India

Department of Computer Science and
Engineering

LECTURE NOTES

B.TECH

(IV YEAR – I SEM)

(2018-19)

 Faculty in charge HOD-CSE

 A SYAM PRASAD, M GAYATRI, D KALPANA, M JAYPAL Dr. D SUJATHA

Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2008 Certified

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Name of the Subject : LINUX PROGRAMMING

SUBJECT CODE : R15A 0527 Programme : UG

Branch : CSE

Year : IV

Semester : I

No. of Pages : 145

PREPARED BY:

Name : A SYAM PRASAD

Design : Assoc. Professor

Name : M JAYPAL

Design : Assoc. Professor

Name : M GAYATRI

Design : Assoc. Professor

Name : D KALPANA

Design : Asst. Professor

 HOD PRINCIPAL

Syllabus
UNIT I

Linux Utilities - File handling utilities, Security by file permissions, Process utilities, Disk
utilities, Networking commands, Filters, Text processing utilities and Backup utilities. Sed-
Scripts, Operation, Addresses, Commands, Applications, awk- Execution, Fields and Records,
Scripts, Operation, Patterns, Actions, Associative Arrays, String and Mathematical functions,
System commands in awk, Applications.

Shell programming with Bourne again shell(bash) - Introduction, shell responsibilities, pipes
and Redirection, here documents, running a shell script, the shell as a programming
language, shell meta characters, file name substitution, shell variables, command
substitution, shell commands, the environment, quoting, test command, control structures,
arithmetic in shell, shell script examples, interrupt processing, functions, debugging shell
scripts.

UNIT II

Files and Directories- File Concept, File types, File System Structure, file metadata-Inodes,
kernel support for files, system calls for file I/O operations- open, create, read, write, close,
lseek, dup2,file status information-stat family, file and record locking-lockf and fcntl
functions, file permissions - chmod, fchmod, file ownership-chown, lchown, fchown, links
soft links and hard links – symlink, link, unlink.

Directories - Creating, removing and changing Directories-mkdir, rmdir, chdir, obtaining
current working directory-getcwd, Directory contents, Scanning Directories-opendir,
readdir, closedir, rewinddir, seekdir, telldir functions.

UNIT III

Process – Process concept, Kernel support for process, process identification, process
hierarchy, process states, process control - process creation, waiting for a process, process
termination, zombie process, orphan process, system call interface for process
management-fork, vfork, exit, wait, waitpid, exec family, system, I/O redirection

Signals – Introduction to signals, Signal generation and handling, Kernel support for signals,
Signal function, unreliable signals, reliable signals, kill, raise , alarm, pause, abort, sleep
functions.

UNIT IV

Inter process Communication - Introduction to IPC, IPC between processes on a single
computer system, IPC between processes on different systems, pipes-creation, IPC between
related processes using unnamed pipes, FIFOs-creation, IPC between unrelated processes
using FIFOs (Named pipes),differences between unnamed and named pipes, popen and
pclose library functions.

Message Queues- Kernel support for messages, APIs for message queues, client/server
example.

Semaphores - Kernel support for semaphores, APIs for semaphores, file locking with
semaphores.

UNIT V

Shared Memory- Kernel support for shared memory, APIs for shared memory, shared
memory example.

Sockets- Introduction to Berkeley Sockets, IPC over a network, Client-Server model, Socket
address structures (Unix domain and Internet domain), Socket system calls for connection
oriented protocol and connectionless protocol, example-client/server programs-Single
Server-Client connection, Multiple simultaneous clients, Comparison of IPC mechanisms.

TEXT BOOKS:

1. Unix System Programming using C++, T.Chan, PHI.
2. Unix Concepts and Applications, 4th Edition, Sumitabha Das, TMH,2006.
3. Unix Network Programming, W.R.Stevens, PHI

REFERENCE BOOKS:

1. Linux System Programming, Robert Love, O’Reilly, SPD, rp-2007.
2. Unix for programmers and users, 3rd Edition, Graham Glass, King Ables, Pearson2003,
3. Advanced Programming in the Unix environment, 2nd Edition, W.R.Stevens, Pearson.
4. System Programming with C and Unix, A.Hoover, Pearson.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Vision

 To acknowledge quality education and instill high patterns of discipline

making the students technologically superior and ethically strong which

involves the improvement in the quality of life in human race.

Mission

 To achieve and impart holistic technical education using the best of

infrastructure, outstanding technical and teaching expertise to establish

the students into competent and confident engineers.

 Evolving the center of excellence through creative and innovative

teaching learning practices for promoting academic achievement to

produce internationally accepted competitive and world class

professionals.

Course Objectives & Outcomes

Course Objectives

 To develop the skills necessary for Unix systems programming including file system

programming, process and signal management, and interprocess communication.

 To make effective use of Unix utilities and Shell scripting language such as bash.

 To develop the basic skills required to write network programs using Sockets.

Course Outcomes

After Completion of this course Students will be able to

 Students will be able to use Linux environment efficiently

 Solve problems using bash for shell scripting

 Work confidently in Unix/Linux environment

Linux Programming IV B.Tech I Sem (R15)

Dept. of CSE, MRCET Page 1

 "Unit-I - Linux Utilities"

Introduction to Linux

Linux is a Unix-like computer operating system assembled under the model of free and open

source software development and distribution. The defining component of Linux is the Linux

kernel, an operating system kernel first released 5 October 1991 by Linus Torvalds.

A distribution oriented toward desktop use will typically include the X Window System and an

accompanying desktop environment such as GNOME or KDE Plasma. Some such distributions

may include a less resource intensive desktop such as LXDE or Xfce for use on older or less

powerful computers. A distribution intended to run as a server may omit all graphical

environments from the standard install and instead include other software such as the Apache

HTTP Server and an SSH server such as OpenSSH. Because Linux is freely redistributable,

anyone may create a distribution for any intended use. Applications commonly used with

desktop Linux systems include the Mozilla Firefox web browser, the LibreOffice office

application suite, and the GIMP image editor.

History

The Unix operating system was conceived and implemented in 1969 at AT&T's Bell

Laboratories in the United States by Ken Thompson, Dennis Ritchie, Douglas McIlroy, and Joe

Ossanna. It was first released in 1971 and was initially entirely written in assembly language, a

common practice at the time. Later, in a key pioneering approach in 1973, Unix was re-written in

the programming language C by Dennis Ritchie (with exceptions to the kernel and I/O). The

availability of an operating system written in a high-level language allowed easier portability to

different computer platforms.

Programming on Linux

Most Linux distributions support dozens of programming languages. The original development

tools used for building both Linux applications and operating system programs are found within

the GNU toolchain, which includes the GNU Compiler Collection (GCC) and the GNU build

system. Amongst others, GCC provides compilers for Ada, C, C++, Java, and Fortran.

Most distributions also include support for PHP, Perl, Ruby, Python and other dynamic

languages. While not as common, Linux also supports C# (via Mono), Vala, and Scheme. A

number of Java Virtual Machines and development kits run on Linux, including the original Sun

Microsystems JVM (HotSpot), and IBM's J2SE RE, as well as many open-source projects like

Kaffe and JikesRVM.

Linux Advantages

1. Low cost: You don„t need to spend time and money to obtain licenses since Linux and

much of its software come with the GNU General Public License

2. Stability: Linux doesn„t need to be rebooted periodically to maintain performance levels.

3. Performance: Linux provides persistent high performance on workstations and on

networks..

4. Network friendliness: It can perform tasks such as network backups faster and more

reliably than alternative systems.

5. Flexibility: Linux can be used for high performance server applications, desktop

applications, and embedded systems.

http://en.wikipedia.org/wiki/Unix-like
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Free_and_open_source_software
http://en.wikipedia.org/wiki/Free_and_open_source_software
http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/Operating_system_kernel
http://en.wikipedia.org/wiki/Linus_Torvalds
http://en.wikipedia.org/wiki/X_Window_System
http://en.wikipedia.org/wiki/Desktop_environment
http://en.wikipedia.org/wiki/GNOME
http://en.wikipedia.org/wiki/KDE_Plasma_Workspaces
http://en.wikipedia.org/wiki/LXDE
http://en.wikipedia.org/wiki/Xfce
http://en.wikipedia.org/wiki/Apache_HTTP_Server
http://en.wikipedia.org/wiki/Apache_HTTP_Server
http://en.wikipedia.org/wiki/SSH_server
http://en.wikipedia.org/wiki/OpenSSH
http://en.wikipedia.org/wiki/Mozilla_Firefox
http://en.wikipedia.org/wiki/LibreOffice
http://en.wikipedia.org/wiki/GIMP
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/AT%26T
http://en.wikipedia.org/wiki/Ken_Thompson
http://en.wikipedia.org/wiki/Dennis_Ritchie
http://en.wikipedia.org/wiki/Douglas_McIlroy
http://en.wikipedia.org/wiki/Joe_Ossanna
http://en.wikipedia.org/wiki/Joe_Ossanna
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/Dennis_Ritchie
http://en.wikipedia.org/wiki/Porting
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/GNU_toolchain
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/wiki/GNU_build_system
http://en.wikipedia.org/wiki/GNU_build_system
http://en.wikipedia.org/wiki/Ada_%28programming_language%29
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/Ruby_programming_language
http://en.wikipedia.org/wiki/Python_programming_language
http://en.wikipedia.org/wiki/Dynamic_programming_language
http://en.wikipedia.org/wiki/Dynamic_programming_language
http://en.wikipedia.org/wiki/C_Sharp_%28programming_language%29
http://en.wikipedia.org/wiki/Mono_%28software%29
http://en.wikipedia.org/wiki/Vala_%28programming_language%29
http://en.wikipedia.org/wiki/Scheme_programming_language
http://en.wikipedia.org/wiki/Java_Virtual_Machine
http://en.wikipedia.org/wiki/HotSpot
http://en.wikipedia.org/wiki/Kaffe
http://en.wikipedia.org/wiki/JikesRVM

Linux Programming IV B.Tech I Sem (R15)

Dept. of CSE, MRCET Page 2

6. Compatibility: It runs all common Unix software packages and can process all common

file formats.

7. Choice: The large number of Linux distributions gives you a choice.

8. Fast and easy installation: Most Linux distributions come with user-friendly installation

and setup programs.

9. Full use of hard disk: Linux continues work well even when the hard disk is almost full.

10. Multitasking: Linux is designed to do many things at the same time; e.g., a large printing

job in the background won„t slow down your other work.

11. Security: Linux is one of the most secure operating systems. ―Walls‖ and flexible file

access permission systems prevent access by unwanted visitors or viruses.

12. Open Source: If you develop software that requires knowledge or modification of the

operating system code, Linux„s source code is at your fingertips.

The difference between Linux and UNIX operating systems

UNIX is copyrighted name only big companies are allowed to use the UNIX copyright and

name, so IBM AIX and Sun Solaris and HP-UX all are UNIX operating systems. The Open

Group holds the UNIX trademark in trust for the industry, and manages the UNIX trademark

licensing program.Most UNIX systems are commercial in nature.

Linux is a UNIX Clone

But if you consider Portable Operating System Interface (POSIX) standards then Linux can be

considered as UNIX. To quote from Official Linux kernel README file:

Linux is a Unix clone written from scratch by Linus Torvalds with assistance from a loosely-knit

team of hackers across the Net. It aims towards POSIX compliance.

Linux Is Just a Kernel

Linux is just a kernel. All Linux distributions includes GUI system + GNU utilities (such as cp,

mv, ls,date, bash etc) + installation & management tools + GNU c/c++ Compilers + Editors (vi)

+ and various applications (such as OpenOffice, Firefox).

License and cost

Linux is Free (as in beer [freedom]). You can download it from the Internet or redistribute it

under GNU licenses.

User-Friendly

Security Firewall Software

Backup and Recovery Software

UNIX and Linux comes with different set of tools for backing up data to tape and other backup

media. However, both of them share some common tools such as tar, dump/restore, and cpio etc.

File Systems

 Linux by default supports and use ext3 or ext4 file systems.

 UNIX comes with various file systems such as jfs, gpfs (AIX), jfs, gpfs (HP-UX), jfs, gpfs

(Solaris).

http://www.unix.org/
http://www.unix.org/

Linux Programming IV B.Tech I Sem (R15)

Dept. of CSE, MRCET Page 3

System Administration Tools

1. UNIX comes with its own tools such as SAM on HP-UX.

2. Suse Linux comes with Yast

3. Redhat Linux comes with its own gui tools called redhat-config-*.

However, editing text config file and typing commands are most popular options for sys admin

work under UNIX and Linux.

UNIX Operating System Names

A few popular names:

1. HP-UX

2. IBM AIX

3. Sun Solairs

4. Mac OS X

5. IRIX

Linux Distribution Names

A few popular names:

1. Redhat Enterprise Linux

2. Fedora Linux

3. Debian Linux

4. Suse Enterprise Linux

5. Ubuntu Linux

Fundamental differences between Linux and Windows

#1: Full access vs. no access

#2: Licensing freedom vs. licensing restrictions

#3: Online peer support vs. paid help-desk support

#4: Full vs. partial hardware support

#5: Command line vs. no command line

#7: Flexibility vs. rigidity

#8: Fanboys vs. corporate types

#9: Automated vs. nonautomated removable media

#10: Multilayered run levels vs. a single-layered run level

File Handling utilities:

cat COMMAND:

cat linux command concatenates files and print it on the standard output.

SYNTAX:

The Syntax is

cat [OPTIONS] [FILE]...

Linux Programming IV B.Tech I Sem (R15)

Dept. of CSE, MRCET Page 4

OPTIONS:

-A Show all.

-b Omits line numbers for blank space in the output.

-e A $ character will be printed at the end of each line prior to a new line.

-E Displays a $ (dollar sign) at the end of each line.

-n Line numbers for all the output lines.

-s If the output has multiple empty lines it replaces it with one empty line.

-T Displays the tab characters in the output.

-v

Non-printing characters (with the exception of tabs, new-lines and form-feeds)

are printed visibly.

EXAMPLE:

1. To Create a

new file: cat >

file1.txt

This command creates a new file file1.txt. After typing into the file press control+d

(^d) simultaneously to end the file.

2. To Append data into

the file: cat >> file1.txt

To append data into the same file use append operator >> to write into the file, else

the file will be overwritten (i.e., all of its contents will be erased).

3. To display

a file: cat

file1.txt

This command displays the data in the file.

4. To concatenate several files and display:

cat file1.txt file2.txt

The above cat command will concatenate the two files (file1.txt and file2.txt) and it

will display the output in the screen. Some times the output may not fit the monitor

screen. In such situation you can print those files in a new file or display the file

using less command.

cat file1.txt file2.txt | less

5. To concatenate several files and to transfer the output to

another file. cat file1.txt file2.txt > file3.txt

In the above example the output is redirected to new file file3.txt. The cat command

will create new file file3.txt and store the concatenated output into file3.txt.

rm COMMAND:

rm linux command is used to remove/delete the file from the directory.

SYNTAX:

The Syntax is rm [options..] [file | directory]

Linux Programming IV B.Tech I Sem (R15)

Dept. of CSE, MRCET Page 5

OPTIONS:

-f Remove all files in a directory without prompting the user.

-i

Interactive. With this option, rm prompts for confirmation before removing

any files.

-r (or) -R

Recursively remove directories and subdirectories in the argument list. The

directory will be emptied of files and removed. The user is normally

prompted for removal of any write-protected files which the directory

contains.

1. To Remove / Delete

a file: rm file1.txt

Here rm command will remove/delete the file file1.txt.

2. To delete a

directory tree: rm -

ir tmp

This rm command recursively removes the contents of all subdirectories of the tmp

directory, prompting you regarding the removal of each file, and then removes the

tmp directory itself.

3. To remove more files

at once rm file1.txt

file2.txt

rm command removes file1.txt and file2.txt files at the same time.

cd COMMAND:

cd command is used to change the directory.

SYNTAX:

The

Syntax is

cd [directory | ~ | ./ | ../ | -]

OPTIONS:

-L Use the physical directory structure.

-P Forces symbolic links.

1. cd linux-command

This command will take you to the sub-directory(linux-command) from its parent

directory.

2. cd ..

This will change to the parent-directory from the current working directory/sub-directory.

3. cd ~

This command will move to the user's home directory which is "/home/username".

cp COMMAND:

cp command copy files from one location to another. If the destination is an existing

file, then the file is overwritten; if the destination is an existing directory, the file is copied

into the directory (the directory is not overwritten).

SYNTAX:

The

Linux Programming IV B.Tech I Sem (R15)

Dept. of CSE, MRCET Page 6

Syntax is

cp [OPTIONS]... SOURCE DEST

cp [OPTIONS]... SOURCE... DIRECTORY

cp [OPTIONS]... --target-directory=DIRECTORY SOURCE...

OPTIONS:

-a same as -dpR.

--

backup[=CONTROL]

make a backup of each existing destination file

-b like --backup but does not accept an argument.

-f if an existing destination file cannot be opened, remove it and try

again

-p same as --preserve=mode,ownership,timestamps.

--

preserve[=ATTR_LIST]

preserve the specified attributes (default:

mode,ownership,timestamps) and security contexts, if possible

additional attributes: links, all.

--no-

preserve=ATTR_LIST

don't preserve the specified attribute.

--parents append source path to DIRECTORY.

EXAMPLE:

1. Copy

two files:

cp file1

file2

The above cp command copies the content of file1.php to file2.php.

2. To backup the

copied file: cp -b

file1.php file2.php

Backup of file1.php will be created with '~' symbol as file2.php~.

3. Copy folder and

subfolders: cp -R

scripts scripts1

The above cp command copy the folder and subfolders from scripts to scripts1.

ls COMMAND:

ls command lists the files and directories under current working directory.

SYNTAX:

The Syntax is

ls [OPTIONS]... [FILE]

OPTIONS:

-l Lists all the files, directories and their mode, Number of links, owner of the

file, file size, Modified date and time and filename.

-t Lists in order of last modification time.

-a Lists all entries including hidden files.

-d Lists directory files instead of contents.

Linux Programming IV B.Tech I Sem (R15)

Dept. of CSE, MRCET Page 7

-p Puts slash at the end of each directories.

-u List in order of last access time.

-i Display inode information.

-ltr List files order by date.

-lSr List files order by file size.

EXAMPLE:

1. Display root directory

contents: ls /

lists the contents of root directory.

2. Display hidden files and

directories: ls -a

lists all entries including hidden files and directories.

3. Display inode information:

ls -i

7373073 book.gif

7373074 clock.gif

7373082 globe.gif

7373078 pencil.gif

7373080 child.gif

7373081 email.gif

7373076 indigo.gif

The above command displays filename with inode value.

ln COMMAND:

ln command is used to create link to a file (or) directory. It helps to provide soft

link for desired files. Inode will be different for source and destination.

SYNTAX:

The

Syntax is

ln [options] existingfile(or directory)name newfile(or directory)name

OPTIONS:

-f Link files without questioning the user, even if the mode of target forbids

writing. This is the default if the standard input is not a terminal.

-n Does not overwrite existing files.

-s Used to create soft links.

EXAMPLE:

1. ln -s file1.txt file2.txt

Creates a symbolic link to 'file1.txt' with the name of 'file2.txt'. Here inode for

'file1.txt' and 'file2.txt' will be different.

2. ln -s nimi nimi1

Creates a symbolic link to 'nimi' with the name of 'nimi1'.

Linux Programming IV B.Tech I Sem (R15)

Dept. of CSE, MRCET Page 8

Read Write Execute

User

Group

Others

chown COMMAND:

chown command is used to change the owner / user of the file or directory. This is an

admin command, root user only can change the owner of a file or directory.

SYNTAX:

The Syntax is

chown [options] newowner filename/directoryname

OPTIONS:

-R Change the permission on files that are in the subdirectories of the directory

that you are currently in.

-c Change the permission for each file.

-f

Prevents chown from displaying error messages when it is unable to change

the ownership of a file.

EXAMPLE:

1. chown hiox test.txt :The owner of the 'test.txt' file is root, Change to new user hiox.

2. chown -R hiox test :The owner of the 'test' directory is root, With -R option the

files and subdirectories user also gets changed.

3. chown -c hiox calc.txt: Here change the owner for the specific 'calc.txt' file only.

chmod COMMAND:

chmod command allows you to alter / Change access rights to files and directories.

File Permission is given for users,group and others as,

Permission 000

Symbolic Mode

SYNTAX:

The Syntax is

chmod [options] [MODE] FileName

Linux Programming IV B.Tech I Sem (R15)

Dept. of CSE, MRCET Page 9

File Permission OPTIONS:

File Permission

0 none

1 execute only

2 write only

3 write and execute

4 read only

5 read and execute

6 read and write

7 set all permissions

EXAMPLE:

1. To view your files with what permission

they are: ls -alt

2. This command is used to view your files

with what permission they are.

3. To make a file readable and writable by the group and

others. chmod 066 file1.txt

4. To allow everyone to read, write, and execute the file chmod 777 file1.txt

mkdir COMMAND: mkdir command is used to create one or more directories.

SYNTAX:

The Syntax is

mkdir [options] directories

OPTIONS:

-m

Set the access mode for the new directories.

-p Create intervening parent directories if they don't exist.

-v Print help message for each directory created.

EXAMPLE:

1. Create

directory:

mkdir test

The above command is used to create the directory 'test'.

2. Create directory and set

permissions: mkdir -m 666 test

The above command is used to create the directory 'test' and set the read and write

permission.

rmdir COMMAND:

rmdir command is used to delete/remove a directory and its subdirectories.

-c Displays names of only

those files whose

permissions are being

changed

-f Suppress most error

messages

-R Change files and directories

recursively

-v Output version information

and exit.

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 10

SYNTAX:

The Syntax is

rmdir [options..] Directory

OPTIONS:

-p Allow users to remove the directory dirname and its parent directories which

become empty.

EXAMPLE:

1. To delete/remove a

directory rmdir tmp

rmdir command will remove/delete the directory tmp if the directory is empty.

2. To delete a

directory tree: rm -

ir tmp

This command recursively removes the contents of all subdirectories of the tmp

directory, prompting you regarding the removal of each file, and then removes the

tmp directory itself.

mv COMMAND:

mv command which is short for move. It is used to move/rename file from one directory

to another. mv command is different from cp command as it completely removes the file

from the source and moves to the directory specified, where cp command just copies the

content from one file to another.

SYNTAX:

The Syntax is

mv [-f] [-i] oldname newname

OPTIONS:

-f This will not prompt before overwriting (equivalent to --reply=yes). mv -f will

move the file(s) without prompting even if it is writing over an existing target.

-i Prompts before overwriting another file.

EXAMPLE:

1. To Rename / Move a file:

mv file1.txt file2.txt

This command renames file1.txt as file2.txt

2. To move a

directory mv

hscripts tmp

In the above line mv command moves all the files, directories and sub-directories

from hscripts folder/directory to tmp directory if the tmp directory already exists. If

there is no tmp directory it rename's the hscripts directory as tmp directory.

3. To Move multiple files/More files into another

directory mv file1.txt tmp/file2.txt newdir

This command moves the files file1.txt from the current directory and file2.txt from

the tmp folder/directory to newdir.

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 11

diff COMMAND:

diff command is used to find differences between two files.

SYNTAX:

The Syntax is

diff [options..] from-file to-file

OPTIONS:

-a Treat all files as text and compare them line-by-line.

-b Ignore changes in amount of white space.

-c Use the context output format.

-e Make output that is a valid ed script.

-H Use heuristics to speed handling of large files that have numerous scattered

small changes.

-i Ignore changes in case; consider upper- and lower-case letters equivalent.

-n

Prints in RCS-format, like -f except that each command specifies the number

of lines affected.

-q

Output RCS-format diffs; like -f except that each command specifies the

number of lines affected.

-r When comparing directories, recursively compare any subdirectories found.

-s Report when two files are the same.

-w Ignore white space when comparing lines.

-y Use the side by side output format.

EXAMPLE:

Lets create two files file1.txt and file2.txt and let it have the following data.

Data in file1.txt Data in file2.txt

HIOX TEST

hscripts.com

with friend ship

hiox india

HIOX TEST

HSCRIPTS.com

with friend ship

1. Compare files ignoring white

space: diff -w file1.txt

file2.txt

This command will compare the file file1.txt with file2.txt ignoring white/blank

space and it will produce the following output.

2c2

< hscripts.com

> HSCRIPTS.com

4d3

< Hioxindia.com

2. Compare the files side by side, ignoring white

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 12

space: diff -by file1.txt file2.txt

This command will compare the files ignoring white/blank space, It is easier to

differentiate the files.

HIOX TEST HIOX TEST

hscripts.com |

HSCRIPTS.com with friend

ship with friend

ship Hioxindia.com <

The third line(with friend ship) in file2.txt has more blank spaces, but still the -b

ignores the blank space and does not show changes in the particular line, -y printout

the result side by side.

3. Compare the files

ignoring case. diff -iy

file1.txt file2.txt

This command will compare the files ignoring case(upper-case and lower-case) and

displays the following output.

HIOX TEST HIOX TEST

hscripts.com

 HSCRIPTS.

com with friend ship |

with friend ship

chgrp COMMAND:

chgrp command is used to change the group of the file or directory. This is an

admin command. Root user only can change the group of the file or directory.

SYNTAX:

The Syntax is

chgrp [options] newgroup filename/directoryname

OPTIONS:

-R Change the permission on files that are in the subdirectories of the directory

that you are currently in.

-c Change the permission for each file.

-f Force. Do not report errors.

Hioxindia.com <

EXAMPLE:

1. chgrp hiox test.txt

The group of 'test.txt' file is root, Change to newgroup hiox.

2. chgrp -R hiox test

The group of 'test' directory is root. With -R, the files and its subdirectories also

changes to newgroup hiox.

3. chgrp -c hiox calc.txt

They above command is used to change the group for the specific file('calc.txt') only.

About wc Short for word count, wc displays a count of lines, words, and characters in a file.

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 13

Syntax

wc [-c | -m | -C] [-l] [-w] [file ...]

-c Count bytes.

-m Count characters.

-C Same as -m.

-l Count lines.

-w Count words delimited by white space characters or new line characters.

Delimiting characters are Extended Unix Code (EUC) characters from any code

set defined by iswspace()

File Name of file to word count.

Examples

wc myfile.txt - Displays information about the file myfile.txt. Below is an example of the output.

5 13 57 myfile.txt

5 = Lines

13 = Words

57 = Characters

About split

Split a file into pieces.

Syntax

split [-linecount | -l linecount] [-a suffixlength] [file [name]]

split -b n [k | m] [-a suffixlength] [file [name]]

-linecount | -l

linecount

Number of lines in each piece. Defaults to 1000 lines.

-a

suffixlength

Use suffixlength letters to form the suffix portion of the filenames of the split

file. If -a is not specified, the default suffix length is 2. If the sum of the name

operand and the suffixlength option-argument would create a filename exceeding

NAME_MAX bytes, an error will result; split will exit with a diagnostic message

and no files will be created.

-b n Split a file into pieces n bytes in size.

-b n k Split a file into pieces n*1024 bytes in size.

-b n m Split a file into pieces n*1048576 bytes in size.

File The path name of the ordinary file to be split. If no input file is given or file is -,

the standard input will be used.

name The prefix to be used for each of the files resulting from the split operation. If no

name argument is given, x will be used as the prefix of the output files. The

combined length of the basename of prefix and suffixlength cannot exceed

NAME_MAX bytes; see OPTIONS.

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 14

Examples

split -b 22 newfile.txt new - would split the file "newfile.txt" into three separate files

called newaa, newab and newac each file the size of 22.

split -l 300 file.txt new - would split the file "newfile.txt" into files beginning with the

name "new" each containing 300 lines of text each

About settime and touch

Change file access and modification time.

Syntax

touch [-a] [-c] [-m] [-r ref_file | -t time

] file settime [-f ref_file] file

-a Change the access time of file. Do not change the modification time unless -m is

also specified.

-c Do not create a specified file if it does not exist. Do not write any diagnostic

messages concerning this condition.

-m Change the modification time of file. Do not change the access time unless -a is

also specified.

-r ref_file Use the corresponding times of the file named by ref_file instead of the current

time.

-t time Use the specified time instead of the current time. time will be a decimal number

of the form:

[[CC]YY]MMDDhhmm [.SS]

MM - The month of the year [01-12].

DD - The day of the month [01-31].

hh - The hour of the day [00-23].

mm - The minute of the hour [00-59].

CC - The first two digits of the year.

YY - The second two digits of the year.

SS - The second of the minute [00-61].

-f ref_file Use the corresponding times of the file named by ref_file instead of the current

time.

File A path name of a file whose times are to be modified.

Examples

settime myfile.txt

Sets the file myfile.txt as the current time / date.

touch newfile.txt

Creates a file known as "newfile.txt", if the file does not already exist. If the file already

exists the accessed / modification time is updated for the file newfile.txt

About comm

Select or reject lines common to two files.

Syntax

comm [-1] [-2] [-3] file1 file2

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 15

-1 Suppress the output column of lines unique to file1.

-2 Suppress the output column of lines unique to file2.

-3 Suppress the output column of lines duplicated in file1 and file2.

file1 Name of the first file to compare.

file2 Name of the second file to compare.

Examples

comm myfile1.txt myfile2.txt

The above example would compare the two files myfile1.txt and myfile2.txt.

Process utilities:

ps COMMAND:

ps command is used to report the process status. ps is the short name for Process Status.

SYNTAX:

The

Synta

x is ps

[optio

ns]

OPTIONS:

-a List information about all processes most frequently requested: all those

except process group leaders and processes not associated with a terminal..

-A or e List information for all processes.

-d List information about all processes except session leaders.

-e List information about every process now running.

-f Generates a full listing.

-j Print session ID and process group ID.

-l Generate a long listing.

EXAMPL

E:

1. ps

Output:

PID TTY TIME CMD

2540 pts/1 00:00:00 bash

2621 pts/1 00:00:00 ps

In the above example, typing ps alone would list the current running processes.

2. ps -f

Output:

UID PID PPID C STIME TTY TIME CMD

nirmala 2540 2536 0 15:31 pts/1 00:00:00 bash

nirmala 2639 2540 0 15:51 pts/1 00:00:00 ps -f Displays full information about

currently running processes.

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 16

kill COMMAND:

kill command is used to kill the background process.

SYNTAX:

The Syntax is kill [-s] [-l] %pid

OPTIONS:

-s Specify the signal to send. The signal may be given as a signal name or number.

-l Write all values of signal supported by the implementation, if no operand is given.

-pid Process id or job id.

-9 Force to kill a process.

EXAMPLE:

Step by Step process:

 Open a process music

player. xmms

press ctrl+z to stop the process.

 To know group id or job id of the

background task. jobs -l

 It will list the background jobs with its job id as,

 xmms 3956

kmail 3467

 To kill a job or

process. kill 3956

kill command kills or terminates the background process xmms.

About nice

Invokes a command with an altered scheduling priority.

Syntax

nice [-increment | -n increment] command [argument ...]

-increment | -

n increment

increment must be in the range 1-19; if not specified, an increment of 10 is

assumed. An increment greater than 19 is equivalent to 19.

The super-user may run commands with priority higher than normal by using a

negative increment such as -10. A negative increment assigned by an

unprivileged user is ignored.

command The name of a command that is to be invoked. If command names any of the

special built-in utilities, the results are undefined.

argument Any string to be supplied as an argument when invoking command.

Examples

nice +13 pico myfile.txt - runs the pico command on myfile.txt with an increment of +13.

About at Schedules a command to be ran at a particular time, such as a print job late at night.

Syntax

at executes commands at a specified time.

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 17

atq lists the user's pending jobs, unless the user is the superuser; in that case, everybody's jobs

are listed. The format of the output lines (one for each job) is: Job number, date, hour, job

class.

atrm deletes jobs, identified by their job number.

batch executes commands when system load levels permit; in other words, when the load

average drops below 1.5, or the value specified in the invocation of atrun.

at [-c | -k | -s] [-f filename] [-q queuename] [-m] -t time [date] [-l] [-r]

-c C shell. csh(1) is used to execute the at-job.

-k Korn shell. ksh(1) is used to execute the at-job.

-s Bourne shell. sh(1) is used to execute the at-job.

-f filename Specifies the file that contains the command to run.

-m Sends mail once the command has been run.

-l Lists the commands that have been set to run.

-r Cancels the command that you have set in the past.

Examples

at -m 01:35 < atjob = Run the commands listed in the 'atjob' file at 1:35AM, in addition all

output that is generated from job mail to the user running the task. When this command has

been successfully enter you should receive a prompt similar to the below example.

commands will be executed using

 /bin/csh job 1072250520.a at Wed Dec 24 00:22:00 2003

at -l = This command will list each of the scheduled jobs as seen

below. 1072250520.a Wed Dec 24 00:22:00 2003

at -r 1072250520.a = Deletes the job just created. or

atrm 23 = Deletes job 23.

If you wish to create a job that is repeated you could modify the file that executes the

commands with another command that recreates the job or better yet use the crontab

command.

Note: Performing just the at command at the prompt will give you an error "Garbled

Time", this is a standard error message if no switch or time setting is given.

Filters:

more COMMAND:

more command is used to display text in the terminal screen. It allows only

backward movement.

SYNTAX: more [options] filename

http://www.computerhope.com/unix/ucrontab.htm
http://www.computerhope.com/unix/ucrontab.htm
http://www.computerhope.com/unix/ucrontab.htm

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 18

OPTIONS:

-c Clear screen before displaying.

-e Exit immediately after writing the last line of the last file in the argument list.

-n Specify how many lines are printed in the screen for a given file.

+n Starts up the file from the given number.

EXAMPLE:

1. more -c index.php

Clears the screen before printing the file .

2. more -3 index.php

Prints first three lines of the given file. Press Enter to display the file line by line.

head COMMAND:

head command is used to display the first ten lines of a file, and also specifies how many

lines to display.

SYNTAX:

head [options] filename

OPTIONS:

-n To specify how many lines you want to display.

-n number

The number option-argument must be a decimal integer whose sign affects

the location in the file, measured in lines.

-c number

The number option-argument must be a decimal integer whose sign affects

the location in the file, measured in bytes.

EXAMPLE:

1. head index.php

This command prints the first 10 lines of 'index.php'.

2. head -5 index.php

The head command displays the first 5 lines of 'index.php'.

3. head -c 5 index.php

The above command displays the first 5 characters of 'index.php'.

tail COMMAND:

tail command is used to display the last or bottom part of the file. By default it displays

last 10 lines of a file.

SYNTAX: tail [options] filename

OPTIONS:

-l To specify the units of lines.

-b To specify the units of blocks.

-n To specify how many lines you want to display.

-c number

The number option-argument must be a decimal integer whose sign affects the

location in the file, measured in bytes.

-n number

The number option-argument must be a decimal integer whose sign affects the

location in the file, measured in lines.

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 19

EXAMPLE:

1. tail index.php

It displays the last 10 lines of 'index.php'.

2. tail -2 index.php

It displays the last 2 lines of 'index.php'.

3. tail -n 5 index.php

It displays the last 5 lines of 'index.php'.

4. tail -c 5 index.php

It displays the last 5 characters of 'index.php'.

cut COMMAND:

cut command is used to cut out selected fields of each line of a file. The cut command

uses delimiters to determine where to split fields.

SYNTAX: cut [options]

OPTIONS:

-c Specifies character positions.

-b Specifies byte positions.

-d flags Specifies the delimiters and fields.

EXAMPLE:

1. cut -c1-3 text.txt

Output: Thi

Cut the first three letters from the above line.

2. cut -d, -f1,2 text.txt

Output: This is, an example program

The above command is used to split the fields using delimiter and cut the first two fields.

paste COMMAND:

paste command is used to paste the content from one file to another file. It is also used

to set column format for each line.

SYNTAX: paste [options]

OPTIONS:

-s Paste one file at a time instead of in parallel.

-d Reuse characters from LIST instead of TABs .

EXAMPLE:

1. paste test.txt>test1.txt

Paste the content from 'test.txt' file to 'test1.txt' file.

2. ls | paste - - - -

List all files and directories in four columns for each line.

sort COMMAND:

sort command is used to sort the lines in a text file.

SYNTAX: sort [options] filename

OPTIONS:

-r Sorts in reverse order.

-u If line is duplicated display only once.

-o filename Sends sorted output to a file.

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 20

EXAMPLE:

1. sort test.txt

Sorts the 'test.txt'file and prints result in the screen.

2. sort -r test.txt

Sorts the 'test.txt' file in reverse order and prints result in the screen.

About uniq

Report or filter out repeated lines in a file.

Syntax: uniq [-c | -d | -u] [-f fields] [-s char] [-n] [+m] [input_file [output_file]]

-c Precede each output line with a count of the number of times the line occurred in

the input.

-d Suppress the writing of lines that are not repeated in the input.

-u Suppress the writing of lines that are repeated in the input.

-f

fields

Ignore the first fields fields on each input line when doing comparisons, where fields is

a positive decimal integer. A field is the maximal string matched by the basic regular

expression: [[:blank:]]*[^[:blank:]]*

If fields specifies more fields than appear on an input line, a null string will be used for

comparison.

-s

char

Ignore the first chars characters when doing comparisons, where chars is a positive

decimal integer. If specified in conjunction with the -f option, the first chars characters

after the first fields fields will be ignored. If chars specifies more characters than

remain on an input line, a null string will be used for comparison.

-n Equivalent to -f fields with fields set to n.

+m Equivalent to -s chars with chars set to m.

input

_file

A path name of the input file. If input_file is not specified, or if the input_file is -

,the standard input will be used.

output_

file

A path name of the output file. If output_file is not specified, the standard output

will be used. The results are unspecified if the file named by output_file is the file named

by input_file.

Examples

uniq myfile1.txt > myfile2.txt - Removes duplicate lines in the first file1.txt and outputs

the results to the second file.

tr Translate characters.

Syntax: tr [-c] [-d] [-s] [string1] [string2]

-c Complement the set of characters specified by string1.

-d Delete all occurrences of input characters that are specified by string1.

-s Replace instances of repeated characters with a single character.

string1 First string or character to be changed.

string2 Second string or character to change the string1.

Examples

echo "12345678 9247" | tr 123456789 computerh - this example takes an echo response

of '12345678 9247' and pipes it through the tr replacing the appropriate numbers with the

letters. In this example it would return computer hope.

tr -cd '\11\12\40-\176' < myfile1 > myfile2 - this example would take the file myfile1 and

strip all non printable characters and take that results to myfile2.

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 21

General Commands:

date COMMAND:

date command prints the date and time.

SYNTAX:

The Syntax is

date [options] [+format] [date]

OPTIONS:

-a

Slowly adjust the time by sss.fff seconds (fff represents fractions of a second).

This adjustment can be positive or negative.Only system admin/ super user

can adjust the time.

-s date-

string

Sets the time and date to the value specfied in the datestring. The datestr may

contain the month names, timezones, 'am', 'pm', etc.

-u Display (or set) the date in Greenwich Mean Time (GMT-universal time).

Format:

%a Abbreviated weekday(Tue).

%A Full weekday(Tuesday).

%b Abbreviated month name(Jan).

%B Full month name(January).

%c Country-specific date and time

format.

%D Date in the format %m/%d/%y.

%j Julian day of year (001-366).

%n Insert a new line.

%p String to indicate a.m. or p.m.

%T Time in the format %H:%M:%S.

%t Tab space.

%V Week number in year (01-52);

start week on Monday.

EXAMPLE:

1. date command date: The above command will print Wed Jul 23 10:52:34 IST 2008

2. To use tab space: date +"Date is %D %t Time is %T"

The above command will remove space and print as Date is 07/23/08 Time is 10:52:34

3. To know the week number of the year, date -V

The above command will print 30

4. To set the date, date -s "10/08/2008 11:37:23"

The above command will print Wed Oct 08 11:37:23 IST 2008

who COMMAND:

who command can list the names of users currently logged in, their terminal, the time they

have been logged in, and the name of the host from which they have logged in.

SYNTAX: who [options] [file]

OPTIONS:

am i Print the username of the invoking user, The 'am' and 'i' must be space separated.

-b Prints time of last system boot.

-d print dead processes.

-H Print column headings above the output.

-i

Include idle time as HOURS:MINUTES. An idle time of . indicates activity

within the last minute.

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 22

-m Same as who am i.

-q Prints only the usernames and the user count/total no of users logged in.

-T,-w Include user's message status in the output.

EXAMPLE:

1. who -uH

Output:

NAME LINE TIME IDLE PID COMMENT

hiox ttyp3 Jul 10 11:08 . 4578

This sample output was produced at 11 a.m. The "." indiacates activity within the last

minute.

2. who am i

who am i command prints the user name.

echo COMMAND:

echo command prints the given input string to standard output.

SYNTAX: echo [options..] [string]

OPTIONS:

-n do not output the trailing newline

-e enable interpretation of the backslash-escaped characters listed below

-E disable interpretation of those sequences in STRINGs

Without -E, the following sequences are recognized and interpolated:

\NNN the character whose ASCII code is NNN (octal)

\a alert (BEL)

\\ backslash

\b backspace

\c suppress trailing newline

\f form feed

\n new line

\r carriage return

\t horizontal tab

\v vertical tab

EXAMPLE:

1. echo command

echo "hscripts Hiox India"

The above command will print as hscripts Hiox India

2. To use backspace:

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 23

echo -e "hscripts \bHiox \bIndia"

The above command will remove space and print as hscriptsHioxIndia

3. To use tab space in echo command

echo -e "hscripts\tHiox\tIndia"

The above command will print as hscripts Hiox India

passwd COMMAND:

passwd command is used to change your password.

SYNTAX: passwd [options]

OPTIONS:

-a Show password attributes for all entries.

-l Locks password entry for name.

-d

Deletes password for name. The login name will not be prompted for

password.

-f

Force the user to change password at the next login by expiring the password

for name.

EXAMPLE:

1. passwd

Entering just passwd would allow you to change the password. After entering passwd you

will receive the following three prompts:

Current Password:

New Password:

Confirm New Password:

Each of these prompts must be entered correctly for the password to be successfully

changed.

pwd COMMAND:

pwd - Print Working Directory. pwd command prints the full filename of the current working

directory. SYNTAX: pwd [options]

OPTIONS:

-P The pathname printed will not contain symbolic links.

-L The pathname printed may contain symbolic links.

EXAMPLE:

1. Displays the current working directory.

pwd

If you are working in home directory then, pwd command displays the current working

directory as /home.

cal COMMAND:

cal command is used to display the calendar.

SYNTAX: cal [options] [month] [year]

OPTIONS:

-1 Displays single month as output.

-3 Displays prev/current/next month output.

-s Displays sunday as the first day of the week.

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 24

-m Displays Monday as the first day of the week.

-j Displays Julian dates (days one-based, numbered from January 1).

-y Displays a calendar for the current year.

EXAMPLE:

1. cal

Output:

September 2008

Su Mo Tu We Th Fr Sa

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30

cal command displays the current month calendar.

2. cal -3 5 2008

Output:

April 2008 May 2008 June 2008

Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

1 2 3 4 5 1 2 3 1 2 3 4 5 6 7

6 7 8 9 10 11 12 4 5 6 7 8 9 10 8 9 10 11 12 13 14

13 14 15 16 17 18 19 11 12 13 14 15 16 17 15 16 17 18 19 20 21

20 21 22 23 24 25 26 18 19 20 21 22 23 24 22 23 24 25 26 27 28

27 28 29 30 25 26 27 28 29 30 31 29 30

Here the cal command displays the calendar of April, May and June month of year 2008.

login Command

Signs into a new system.

Syntax: login [-p] [-d device] [-h hostname | terminal | -r hostname] [name [environ]]

Examples

login computerhope.com - Would attempt to login to the computerhope domain.

uname command

Print name of current system.

Syntax

uname [-a] [-i] [-m] [-n] [-p] [-r] [-s] [-v] [-X] [-S systemname]

-a Print basic information currently available from the system.

-i Print the name of the hardware implementation (platform).

-m Print the machine hardware name (class). Use of this option is discouraged; use

uname -p instead.

-n Print the nodename (the nodename is the name by which the system is known to

a communications network).

-p Print the current host's ISA or processor type.

-r Print the operating system release level.

-s Print the name of the operating system. This is the default.

-v Print the operating system version.

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 25

Examples

uname -arv

List the basic system information, OS release, and OS version as shown below.

SunOS hope 5.7 Generic_106541-08 sun4m sparc SUNW,SPARCstation-10

uname -p

Display the Linux platform.

SED:

What is sed?

 A non-interactive stream editor

 Interprets sed instructions and performs actions

 Use sed to:

 Automatically perform edits on file(s)

 Simplify doing the same edits on multiple files

 Write conversion programs

sed command syntax

sed Operation

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 26

How Does sed Work?

 sed reads line of input

 line of input is copied into a temporary buffer called pattern space

 editing commands are applied

 subsequent commands are applied to line in the pattern space, not the

original input line

 once finished, line is sent to output

(unless –n option was used)

 line is removed from pattern space

 sed reads next line of input, until end of file

Note: input file is unchanged

sed instruction format

 address determines which lines in the input file are to be processed by the command(s)

 if no address is specified, then the command is applied to each input line

 address types:

 Single-Line address

 Set-of-Lines address

 Range address

 Nested address

Single-Line Address

 Specifies only one line in the input file

 special: dollar sign ($) denotes last line of input file

Examples:

 show only line 3

sed -n -e '3 p' input-file

 show only last line

sed -n -e '$ p' input-file

 substitute ―endif‖ with ―fi‖ on line 10

sed -e '10 s/endif/fi/' input-file

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 27

Set-of-Lines Address

 use regular expression to match lines

 written between two slashes

 process only lines that match

 may match several lines

 lines may or may not be consecutives

Examples:

sed -e ‘/key/ s/more/other/’ input-file

sed -n -e ‘/r..t/ p’ input-file

Range Address

 Defines a set of consecutive lines

Format:
start-addr,end-addr (inclusive)

Examples:
10,50 line-number,line-number

10,/R.E/ line-number,/RegExp/

/R.E./,10 /RegExp/,line-number

/R.E./,/R.E/ /RegExp/,/RegExp/

Example: Range Address

% sed -n -e ‘/^BEGIN$/,/^END$/p’ input-file

 Print lines between BEGIN and END, inclusive

BEGIN

Line 1 of input

Line 2 of input

Line3 of input END

Line 4 of input

Line 5 of input

Nested Address

 Nested address contained within another address

Example:

print blank lines between line 20 and 30

20,30{

/^$/ p

}

Address with !

 address with an exclamation point (!):

instruction will be applied to all lines that do not match the address

Example:

print lines that do not contain ―obsolete‖

sed -e ‘/obsolete/!p’ input-file

sed commands

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 28

Line Number

 line number command (=) writes the current line number before each matched/output line

Examples:

sed -e '/Two-thirds-time/=' tuition.data

sed -e '/^[0-9][0-9]/=' inventory

modify commands

Insert Command: i

 adds one or more lines directly to the output before the address:

 inserted ―text‖ never appears in sed„s pattern space

 cannot be used with a range address; can only be used with the single-line and set-

of-lines address types

Syntax:

[address] i\

text

Append Command: a

 adds one or more lines directly to the output after the address:

 Similar to the insert command (i), append cannot be used with a range address.

 Appended ―text‖ does not appear in sed„s pattern space.

Syntax:

[address] a\

text

Change Command: c

 replaces an entire matched line with new text

 accepts four address types:

 single-line, set-of-line, range, and nested addresses.

Syntax:

[address1[,address2]] c\

text

Delete Command: d

 deletes the entire pattern space

 commands following the delete command are ignored since the deleted text is no

longer in the pattern space

Syntax: [address1[,address2]] d

Substitute Command (s)

Syntax: [addr1][,addr2] s/search/replace/[flags]

 replaces text selected by search string with replacement string

 search string can be regular expression

flags:  global (g), i.e. replace all occurrences

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 29

 specific substitution count (integer), default 1

Regular Expressions: use with sed

Substitution Back References

Example: Replacement String &

$ cat datafile

Charles Main 3.0 .98 3 34

Sharon Gray 5.3 .97 5 23

$ sed -e ‘s/[0-9][0-9]$/&.5/’ datafile

Charles Main 3.0 .98 3 34.5

Sharon Gray 5.3 .97 5 23.5

Transform Command (y)

 Syntax: [addr1][,addr2]y/a/b/

 translates one character 'a' to another 'b'

 cannot use regular expression metacharacters

 cannot indicate a range of characters

 similar to ―tr‖ command

Patricia Hemenway 4.0 .7 4 17

TB Savage 4.4 .84 5 20

AM Main Jr. 5.1 .94 3 13

Margot Weber 4.5 .89 5 9

Ann Stephens 5.7 .94 5 13

Patricia Hemenway 4.0 .7 4 17.5

TB Savage 4.4 .84 5 20.5

AM Main Jr. 5.1 .94 3 13.5

Margot Weber 4.5 .89 5 9

Ann Stephens 5.7 .94 5 13.5

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 30

Example:

$ sed -e ‘1,10y/abcd/wxyz/’ datafile

sed i/o commands

Input (next) Command: n and N

 Forces sed to read the next input line

 Copies the contents of the pattern space to output

 Deletes the current line in the pattern space

 Refills it with the next input line

 Continue processing

 N (uppercase) Command

 adds the next input line to the current contents of the pattern space

 useful when applying patterns to two or more lines at the same time

Output Command: p and P

 Print Command (p)

 copies the entire contents of the pattern space to output

 will print same line twice unless the option ―–n‖ is used

 Print command: P

 prints only the first line of the pattern space

 prints the contents of the pattern space up to and including a new line character

 any text following the first new line is not printed

List Command (l)
 The list command: l

 shows special characters (e.g. tab, etc)

 The octal dump command (od -c) can be used to produce similar result

Hold Space
 temporary storage area

used to save the contents of the pattern space

 4 commands that can be used to move text back and forth between the pattern space and

the hold space:

h, H

g, G

File commands

 allows to read and write from/to file while processing standard input

 read: r command

 write: w command

Read File command

Syntax: r filename

 queue the contents of filename to be read and inserted into the output stream at

the end of the current cycle, or when the next input line is read

 if filename cannot be read, it is treated as if it were an empty file, without

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 31

any error indication

 single address only

Write File command

Syntax: w filename

 Write the pattern space to filename

 The filename will be created (or truncated) before the first input line is read

 all w commands which refer to the same filename are output through the same

FILE stream

Branch Command (b)

 Change the regular flow of the commands in the script file

Syntax: [addr1][,addr2]b[label]

 Branch (unconditionally) to ‗label„ or end of script

 If ―label‖ is supplied, execution resumes at the line following :label; otherwise,

control passes to the end of the script

 Branch label

:mylabel

Example: The quit (q)

Command Syntax: [addr]q

 Quit (exit sed) when addr is encountered.

Example: Display the first 50 lines and quit

% sed -e ’50q’ datafile

Same as:

% sed -n -e ‘1,50p’ datafile

% head -50 datafile

AWK

What is awk?

 created by: Aho, Weinberger, and Kernighan

 scripting language used for manipulating data and generating reports

 versions of awk

 awk, nawk, mawk, pgawk, …

 GNU awk: gawk

What can you do with awk?

 awk operation:

 scans a file line by line

 splits each input line into fields

 compares input line/fields to

pattern

 performs action(s) on matched lines

 Useful for:

 transform data files

 produce formatted reports

 Programming constructs:

 format output lines

 arithmetic and string operations

 conditionals and loops

 The Command: awk

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 32

Basic awk Syntax

 awk [options] ‘script’ file(s)

 awk [options] –f scriptfile file(s)

Options:

-F to change input field separator

-f to name script file

Basic awk Program
 consists of patterns & actions:

pattern {action}

 if pattern is missing, action is applied to all lines

 if action is missing, the matched line is printed

 must have either pattern or action

Example:

awk '/for/' testfile

 prints all lines containing string ―for‖ in testfile

Basic Terminology: input file

 A field is a unit of data in a line

 Each field is separated from the other fields by the field separator

 default field separator is whitespace

 A record is the collection of fields in a line

 A data file is made up of records

Example Input File

Buffers

awk supports two types of buffers:

record and field

 field buffer:

 one for each fields in the current record.

 names: $1, $2, …

 record buffer :

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 33

 $0 holds the entire record

Some System Variables

FS Field separator (default=whitespace)

RS Record separator (default=\n)

NF Number of fields in current record

NR Number of the current record

OFS Output field separator (default=space)

ORS Output record separator (default=\n)

FILENAME Current filename

Example: Records and Fields

% cat emps

Tom Jones 4424 5/12/66 543354

Mary Adams 5346 11/4/63 28765

Sally Chang 1654 7/22/54 650000

Billy Black 1683 9/23/44 336500

% awk '{print NR, $0}' emps

1 Tom Jones 4424 5/12/66 543354

2 Mary Adams 5346 11/4/63 28765

3 Sally Chang 1654 7/22/54 650000

4 Billy Black 1683 9/23/44

Example: Space as Field Separator

336500

% cat emps

Tom Jones 4424 5/12/66 543354

Mary Adams 5346 11/4/63 28765

Sally Chang 1654 7/22/54 650000

Billy Black 1683 9/23/44 336500

% awk '{print NR, $1, $2, $5}' emps

1 Tom Jones 543354

2 Mary Adams 28765

3 Sally Chang 650000

4 Billy Black 336500

Example: Colon as Field Separator

% cat em2

Tom Jones:4424:5/12/66:543354

Mary Adams:5346:11/4/63:28765

Sally Chang:1654:7/22/54:650000

Billy Black:1683:9/23/44:336500

% awk -F: '/Jones/{print $1, $2}' em2

Tom Jones 4424

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 34

awk Scripts

 awk scripts are divided into three major parts:

 comment lines start with #

 BEGIN: pre-processing

 performs processing that must be completed before the file processing starts (i.e.,

before awk starts reading records from the input file)

 useful for initialization tasks such as to initialize variables and to create report

headings

 BODY: Processing

 contains main processing logic to be applied to input records

 like a loop that processes input data one record at a time:

 if a file contains 100 records, the body will be executed 100 times, one for

each record

 END: post-processing

 contains logic to be executed after all input data have been processed

 logic such as printing report grand total should be performed in this part of the

script

Pattern / Action Syntax

Categories of Patterns

Expression Pattern types

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 35

 match

 entire input record

regular expression enclosed by ‗/„s

 explicit pattern-matching expressions

~ (match), !~ (not match)

 expression operators

 arithmetic

 relational

 logical

Example: match input record

% cat employees2

Tom Jones:4424:5/12/66:543354

Mary Adams:5346:11/4/63:28765

Sally Chang:1654:7/22/54:650000

Billy Black:1683:9/23/44:336500

% awk –F: '/00$/' employees2

Sally Chang:1654:7/22/54:650000

Billy Black:1683:9/23/44:336500

Example: explicit match

% cat datafile

northwest NW Charles Main 3.0 .98 3 34

western WE Sharon Gray 5.3 .97 5 23

southwest SW Lewis Dalsass 2.7 .8 2 18

southern SO Suan Chin 5.1 .95 4 15

southeast SE Patricia Hemenway 4.0 .7 4 17

eastern EA TB Savage 4.4 .84 5 20

northeast NE AM Main 5.1 .94 3 13

north NO Margot Weber 4.5 .89 5 9

central CT Ann Stephens 5.7 .94 5 13

% awk '$5 ~ /\.[7-9]+/' datafile

southwest SW Lewis Dalsass 2.7 .8

 2 18

central CT Ann Stephens 5.7 .94 5 13

Examples: matching with REs

% awk '$2 !~ /E/{print $1, $2}'

datafile

northwest NW

southwest SW

southern SO

north NO

central CT

% awk '/^[ns]/{print $1}' datafile

northwest

southwest

southern southeast

northeast north

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 36

Arithmetic Operators

 Operator Meaning Example

+ Add x + y

- Subtract x – y

* Multiply x * y

/ Divide x / y

% Modulus x % y

^ Exponential x ^ y

Example:

% awk '$3 * $4 > 500 {print $0}' file

Relational Operators

Operator Meaning Example

< Less than x < y

< = Less than or equal x < = y

== Equal to x == y

!= Not equal to x != y

> Greater than x > y

> = Greater than or equal to x > = y

~ Matched by reg exp x ~ /y/

!~ Not matched by req exp x !~ /y/

Logical Operators

 Operator Meaning Example

&& Logical AND a && b

|| Logical OR a || b

! NOT ! a

Examples:

% awk '($2 > 5) && ($2 <= 15) {print $0}' file

% awk '$3 == 100 || $4 > 50' file

Range Patterns

 Matches ranges of consecutive input lines

Syntax:

pattern1 , pattern2 {action}

 pattern can be any simple pattern

 pattern1 turns action on

 pattern2 turns action off

Range Pattern Example

awk Actions

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 37

awk expressions

 Expression is evaluated and returns value

 consists of any combination of numeric and string constants, variables, operators,

functions, and regular expressions

 Can involve variables

 As part of expression evaluation

 As target of assignment

awk variables
 A user can define any number of variables within an awk script

 The variables can be numbers, strings, or arrays

 Variable names start with a letter, followed by letters, digits, and underscore

 Variables come into existence the first time they are referenced; therefore, they do not

need to be declared before use

 All variables are initially created as strings and initialized to a null string ―‖

Format: variable = expression

Examples: % awk '$1 ~ /Tom/

{wage = $3 * $4; print wage}' filename

% awk '$4 == "CA" {$4 = "California"; print $0}' filename

awk assignment operators

= assign result of right-hand-side expression to

left-hand-side variable

++ Add 1 to variable

-- Subtract 1 from variable

+= Assign result of addition

-= Assign result of subtraction

*= Assign result of multiplication

/= Assign result of division

%= Assign result of modulo

^= Assign result of exponentiation

Awk example

 File: grades

john 85 92 78 94 88

andrea 89 90 75 90 86

jasper 84 88 80 92 84

 awk script: average

average five grades

{ total = $2 + $3 + $4 + $5 +

$6

 avg = total / 5

print $1, avg }

 Run as:

awk –f average grades

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 38

Output Statements

print

print easy and simple output

printf

print formatted (similar to C printf)

sprintf

format string (similar to C sprintf)

Function: print
 Writes to standard output

 Output is terminated by ORS

 default ORS is newline

 If called with no parameter, it will print $0

 Printed parameters are separated by OFS,

 default OFS is blank

 Print control characters are allowed:

 \n \f \a \t \\ …

print example

% awk '{print}' grades

john 85 92 78 94 88

andrea 89 90 75 90 86

% awk '{print $0}' grades

john 85 92 78 94 88

andrea 89 90 75 90 86

% awk '{print($0)}' grades

john 85 92 78 94 88

andrea 89 90 75 90 86

Redirecting print output

 Print output goes to standard output

unless redirected via:

> ―file‖

>> ―file‖

| ―command‖

 will open file or command only once

 subsequent redirections append to already open stream
>
print Example

% awk '{print $1 , $2 > "file"}' grades

%

cat file

john 85

andrea 89

jasper 84

% awk '{print $1,$2 | "sort"}' grades

andrea 89

jasper 84

john 85

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 39

printf: Formatting output
Syntax: printf(format-string, var1, var2, …)

 works like C printf

 each format specifier in ―format-string‖ requires argument of matching type
>
Format specifiers

%d, %i decimal integer

%c single character

%s string of characters

%f floating point number

%o octal number

%x hexadecimal number

%e scientific floating point notation

%% the letter ―%‖

Format specifier examples

Format specifier modifiers

 between ―%‖ and letter

%10s %7d %10.4f %-20s

 meaning:

 width of field, field is printed right justified

 precision: number of digits after decimal point

 ―-‖ will left justify



sprintf: Formatting text

Syntax:

sprintf(format-string, var1, var2, …)

 Works like printf, but does not produce output

 Instead it returns formatted string

Example:

{

text = sprintf("1: %d – 2: %d", $1, $2)

print text

}

Given: x = ‗A„, y = 15, z = 2.3, and $1 = Bob Smith

Printf Format Specifier What it Does

%c printf("The character is %c \n", x)

output: The character is A

%d printf("The boy is %d years old \n", y)

output: The boy is 15 years old

%s printf("My name is %s \n", $1)

output: My name is Bob Smith

%f printf("z is %5.3f \n", z)

output: z is 2.300

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 40

awk builtin functions

tolower(string)

 returns a copy of string, with each upper-case character converted to lower-case.

Nonalphabetic characters are left unchanged.
>

Example: tolower("MiXeD cAsE 123")

 returns "mixed case 123"

toupper(string)
 returns a copy of string, with each lower-case character converted to upper-case.

>
awk Example: list of products

103:sway bar:49.99

101:propeller:104.99 104:fishing

line:0.99 113:premium fish

bait:1.00 106:cup holder:2.49

107:cooler:14.89

112:boat cover:120.00

109:transom:199.00

110:pulley:9.88 105:mirror:4.99

108:wheel:49.99 111:lock:31.00

102:trailer hitch:97.95

awk Example: output Marine Parts R Us Main catalog

Part-id name price

======================================

101 propeller 104.99

102 trailer hitch 97.95

103 sway bar 49.99

104 fishing line 0.99

105 mirror 4.99

106 cup holder 2.49

107 cooler 14.89

108 wheel 49.99

109 transom 199.00

110 pulley 9.88

111 lock 31.00

112 boat cover 120.00

113 premium fish bait 1.00

======================================

Catalog has 13 parts

awk Example:
complete BEGIN {

FS= ":"

print "Marine Parts R Us"

print "Main catalog"

print "Part-id\tname\t\t\t price"

print "======================================" }

{ printf("%3d\t%-20s\t%6.2f\n", $1, $2, $3) count++} END {

print "======================================"

print "Catalog has " count " parts" }

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 41

awk Array

 awk allows one-dimensional arrays to store strings or numbers

 index can be number or string

 array need not be declared

 its size

 its elements

 array elements are created when first used

 initialized to 0 or ―‖

Arrays in awk

Syntax: arrayName[index] = value

Examples:

list[1] = "one"

list[2] = "three"

list["other"] = "oh my !"

Illustration: Associative Arrays

 awk arrays can use string as index

Awk builtin split function

split(string, array, fieldsep)

 divides string into pieces separated by fieldsep, and stores the pieces in array

 if the fieldsep is omitted, the value of FS is used.

Example:

split("auto-da-fe", a, "-")

 sets the contents of the array a as follows:

a[1] = "auto"

a[2] = "da"

a[3] = "fe"

Example: process sales data

 input file:

 output:

 summary of category sales

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 42

Illustration: process each input line

Illustration: process each input line

Summary: awk program

Example: complete program

% cat sales.awk

{

deptSales[$2] += $3

}

END {

for (x in deptSales)

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 43

print x, deptSales[x]

}

% awk –f sales.awk sales

Awk control structures

 Conditional

 if-else

 Repetition

 for

 with counter

 with array index

 while

 do-while

 also: break, continue

if Statement

Syntax:

if (conditional expression)

statement-1

else

statement-2

Example:

if (NR < 3)

print $2

else

print $3

for Loop Syntax:

for (initialization; limit-test; update) statement

Example:

for (i = 1; i <= NR; i++)

{

total += $i

count++

}

for Loop for arrays

Syntax:

for (var in array)

statement

Example:

for (x in deptSales)

{

print x, deptSales[x]

}

While Loop

Syntax:

while (logical expression) statement

Example:

i = 1

while (i <= NF)

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 44

{

print i, $i i++

}

do-while Loop

Syntax:

do

statement while (condition)

 statement is executed at least once, even if condition is false at the beginning

Example:

i = 1 do {

print $0 i++

} while (i <= 10)

 loop control statements

 break

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 45

Shell Programming
The shell has similarities to the DOS command processor Command.com (actually Dos was
design as a poor copy of UNIX shell), it's actually much more powerful, really a programming
language in its own right.

A shell is always available on even the most basic UNIX installation. You have to go through the
shell to get other programs to run. You can write programs using the shell. You use the shell to
administrate your UNIX system. For example:

ls -al | more
is a short shell program to get a long listing of the present directory and route the output through
the more command.

What is a Shell?
A shell is a program that acts as the interface between you and the UNIX system, allowing
you to enter commands for the operating system to execute.

Here are some common shells.

Introduction- Working with Bourne Shell

• The Bourne shell, or sh, was the default Unix shell of Unix Version 7. It was

developed by Stephen Bourne, of AT&T Bell Laboratories.
• A Unix shell, also called "the command line", provides the traditional user

interface for the Unix operating system and for Unix-like systems. Users direct the

operation of the computer by entering command input as text for a shell to execute.
• There are many different shells in use. They are

– Bourne shell (sh)
– C shell (csh)
– Korn shell (ksh)

 Bourne Again shell (bash)

• When we issue a command the shell is the first agency to acquire the

information. It accepts and interprets user requests. The shell examines &rebuilds the

commands &leaves the execution work to kernel. The kernel handles the h/w on

behalf of these commands &all processes in the system.

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 46

• The shell is generally sleeping. It wakes up when an input is keyed in at the prompt.

This input is actually input to the program that represents the shell.

Shell responsibilities
1. Program Execution
2. Variable and Filename Substitution
3. I/O Redirection

4. Pipeline Hookup
5. Environment Control
6. Interpreted Programming Language

Program Execution:
• The shell is responsible for the execution of all programs that you request from

your terminal.
• Each time you type in a line to the shell, the shell analyzes the line and then

determines what to do.
• The line that is typed to the shell is known more formally as the command line. The

shell scans this command line and determines the name of the program to be executed and

what arguments to pass to the program.

• Like any other programming language, the shell lets you assign values to variables.

Whenever you specify one of these variables on the command line, preceded by a dollar sign,

the shell substitutes the value assigned to the variable at that point.

• It is the shell's responsibility to take care of input and output redirection on the

command line. It scans the command line for the occurrence of the special redirection

characters <, >, or >>.

• Just as the shell scans the command line looking for redirection characters, it also

looks for the pipe character |. For each such character that it finds, it connects the

standard output from the command preceding the | to the standard input of the one

following the |. It then initiates execution of both programs.

Environment Control:

• The shell provides certain commands that let you customize your

environment. Your environment includes home directory, the characters that the

shell displays to prompt you to type in a command, and a list of the directories to be

searched whenever you request that a program be executed.

Interpreted Programming Language:

• The shell has its own built-in programming language. This language is interpreted,

meaning that the shell analyzes each statement in the language one line at a time and then

executes it. This differs from programming languages such as C and FORTRAN, in which

the programming statements are typically compiled into a machine-executable form before

they are executed.

• Programs developed in interpreted programming languages are typically easier to

debug and modify than compiled ones. However, they usually take much longer to

execute than their compiled equivalents.

Pipes and Redirection

Pipes connect processes together. The input and output of UNIX programs can be redirected.

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 47

Redirecting Output

The > operator is used to redirect output of a program. For example:

ls -l > lsoutput.txt
redirects the output of the list command from the screen to the file lsoutput.txt.

To 0append to a file, use the >> operator.

ps >> lsoutput.txt

Redirecting Input

You redirect input by using the < operator. For example:

more < killout.txt

Pipes

We can connect processes together using the pipe operator (|). For example, the

following program means run the ps program, sort its output, and save it in the file

pssort.out

ps | sort > pssort.out
The sort command will sort the list of words in a textfile into alphbetical order according
to the ASCII code set character order.

Here Documents

A here document is a special way of passing input to a command from a shell script.
The document starts and ends with the same leader after <<.

For example:

#!/bin/sh

cat < this is a here
document
!FUNKY!

How It Works

It executes the here document as if it were input commands.

Running a Shell Script
You can type in a sequence of commands and allow the shell to execute them interactively, or
youu can sotre these commands in a file which you can invoke as a program.

Interactive Programs
A quick way of trying out small code fragments is to just type in the shell script on the
command line. Here is a shell program to compile only files that contain the string POSIX.

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 48

The Shell as a Programming Language

Creating a Script

To create a shell script first use a text editor to create a file containing the commands.

 For example, type the following commands and save them as first.sh

Note: commands start with a #.

The line

#!/bin/sh

is special and tells the system to use the /bin/sh program to execute this program.

The command

exit 0
Causes the script program to exit and return a value of 0, which means there were not errors.

Making a Script Executable
There are two ways to execute the script. 1) invoke the shell with the name of the script file as a
parameter, thus:

/bin/sh first.sh
Or 2) change the mode of the script to executable and then after execute it by just typing its
name.

chmod +x first.sh

first.sh
Actually, you may need to type:

./first.sh

to make the file execute unles the path variable has your directory in it.

Shell Syntax

The modern UNIX shell can be used to write quite large, structured programs.

Shell metacharacters
The shell consists of large no. of metacharacters. These characters plays vital role in Unix
programming.

Types of metacharacters:

1. File substitution

2. I/O redirection

3. Process execution

4. Quoting metacharacters

5. Positional parameters

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 49

6. Special characters

7. Command substitution

Filename substitution:

These metacharacters are used to match the filenames in a directory.

Metacharacter significance
* matches any no. of characters

? matches a single character

[ijk] matches a single character either i,j,k

[!ijk] matches a single character that is not an I,j,k

Shell Variables
Variables are generally created when you first use them. By default, all variables are considered
and stored as strings. Variable names are case sensitive.

 U can define & use variables both in the command line and shell scripts. These
variables are called shell variables.

 No type declaration is necessary before u can use a shell variable.

 Variables provide the ability to store and manipulate the information with in the shell
program. The variables are completely under the control of user.

 Variables in Unix are of two types.

1) User-defined variables: Generalized form:

variable=value.

Eg: $x=10

$echo $x

10
 To remove a variable use unset. $unset x

 All shell variables are initialized to null strings by default. To explicitly set null values

use

x= or x=„‟ or x=“”
 To assign multiword strings to a variable use $msg=„u have a mail‟

2) Environment Variables

 They are initialized when the shell script starts and normally capitalized to distinguish

them from user-defined variables in scripts

 To display all variables in the local shell and their values, type the set command

 The unset command removes the variable from the current shell and sub shell

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 50

Environment Variables Description

$HOME Home directory

$PATH

List of directories to search for

commands

$PS1 Command prompt

$PS2 Secondary prompt

$SHELL Current login shell

$0 Name of the shell script

$# No . of parameters passed

$$ Process ID of the shell script

Command substitution and Shell commands:

read:
The read statement is a tool for taking input from the user i.e. making scripts
interactive. It is used with one or more variables. Input supplied through the standard
input is read into these variables.



$read name

What ever u entered is stored in the variable name.

printf: Printf is used to print formatted

o/p. printf "format" arg1 arg2 ...

Eg: $ printf "This is a number: %d\n" 10

This is a number: 10

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 51

$

Printf supports conversion specification characters like %d, %s ,%x ,%o…. Exit status of a

command:
Every command returns a value after execution .This value is called the exit status or
return value of a command.



This value is said to be true if the command executes successfully and false if it fails.


There is special parameter used by the shell it is the $?. It stores the exit status
of a command.



exit:

The exit statement is used to prematurely terminate a program. When this statement is
encountered in a script, execution is halted and control is returned to the calling
program- in most cases the shell.



 U don‟t need to place exit at the end of every shell script because the shell knows when

script execution is complete.


set:

Set is used to produce the list of currently defined variables.


 $set
Set is used to assign values to the positional parameters.


 $set welcome to Unix

The do-nothing(:)Command

It is a null command.


In some older shell scripts, colon was used at the start of a line to introduce a comment,
but modern scripts uses # now.



expr:

The expr command evaluates its arguments as an expression:



$ expr 8 + 6



 14


 $ x=`expr 12 / 4 `

$ echo $x


export:
There is a way to make the value of a variable known to a sub shell, and that's by
exporting it with the export command. The format of this command is



export variables

where variables is the list of variable names that you want exported. For any sub shells
that get executed from that point on, the value of the exported variables will be passed
down to the sub shell.



eval:

eval scans the command line twice before executing it. General form for eval is eval

command-line


Eg:

$ cat last

eval echo \$$#

$ last one two three four
four

${n}

If u supply more than nine arguments to a program, u cannot access the tenth and greater
arguments with $10, $11, and so on.

${n} must be used. So to directly access argument 10, you must write

${10}

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 52

Shift command:
The shift command allows u to effectively left shift your positional parameters. If u execute the
command

Shift
whatever was previously stored inside $2 will be assigned to $1, whatever was previously
stored in $3 will be assigned to $2, and so on. The old value of $1 will be irretrievably lost.

The Environment-Environment Variables
It creates the variable salutation, displays its value, and some parameter variables.

• When a shell starts, some variables are initialized from values in the environment. Here
is a sample of some of them.

Parameter Variables
• If your script is invoked with parameters, some additional variables are created.

Quoting
Normally, parameters are separated by white space, such as a space. Single quot marks can be
used to enclose values containing space(s). Type the following into a file called quot.sh

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 53

make sure to make it executable by typing the command:

< chmod a+x

quot.sh The results of executing the file is:

How It Works

The variable myvar is created and assigned the string Hi there. The content of the
variable is displyed using the echo $. Double quotes don't effect echoing the value.
Single quotes and backslash do.

The test, or []Command

Here is how to check for the existance of the file fred.c using the test and using
the [] command.

You can even place the then on the same line as the if, if youu add a semicolon
before the word then.

Here are the conditon types that can be used with the test command. There are string
comparison.

There are arithmetic comparison.

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 54

There are file conditions.

Control Structures

The shell has a set of control structures.

if

The if statement is vary similar other programming languages except it ends with a fi.

if condition

then
statements

else

statements

fi

elif
the elif is better known as "else if". It replaces the else part of an if statement with
another if statement. You can try it out by using the following script.

#!/bin/sh

echo "Is it morning? Please answer yes or no"

read timeofday

if [$ti0meofday = "yes"]
then

echo "Good morning"
elif [$timeofday = "no"]; then

echo "Good afternoon"

echo "Sorry, $timeofday not recognized. Enter yes or no"

exit 1 fi

exit 0

How It Works

The above does a second test on the variable timeofday if it isn't equal to yes.

A Problem with Variables

If a variable is set to null, the statement

if [$timeofday = "yes"]

looks like

if [= "yes"]
which is illegal. This problem can be fixed by using double quotes around the variable

name. if ["$timeofday" = "yes"]

for

The for construct is used for looping through a range of values, which can be any set of strings.

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 55

The syntax is:

for variable in values

do

statements
done

Try out the following script:

#!/bin/sh

for foo in bar fud 43
do

echo $foo
done
exit 0

When executed, the output should be:
bar
fud0

43

How It Works
The above example creates the variable foo and assigns it a different value each time
around the for loop.

How It Works

Here is another script which uses the $(command) syntax to expand a list to chap3.txt,
chap4.txt, and chap5.txt and print the files.

#!/bin/sh

for file in $(ls chap[345].txt); do
lpr $file

done0

while

While loops will loop as long as some condition exist. OF course something in the body
statements of the loop should eventually change the condition and cause the loop to exit.
Here is the while loop syntax.

while condition do

statements
done

Here is a whil loop that loops 20 times.
#!/bin/sh

foo=1

while ["$foo" -le 20]

do
echo "Here we go again"
foo=$(($foo+1))

done

exit 0

How It Works

The above script uses the [] command to test foo for <= the value 20. The line

foo=$(($fo0o+1))

increments the value of foo each time the loop executes..

until

The until statement loops until a condition becomes true!

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 56

Its syntax is:

until condition

do

statements
done

Here is a script using until.

#!/bin/sh

until who | grep "$1" > /dev/null
do

Sl0eep 60

done

now ring the bell and announce the expected user.

echo -e \\a

echo "**** $1 has just loogged in ****"

exit 0

case
The case statement allows the testing of a variable for more then one value. The case
statement ends with the word esac. Its syntax is:

case variable in
pattern [| pattern] ...) statements;;

pattern [| pattern] ...) statements;;

...
esac

Here is a sample script using a case statement:

#!/bin/sh

echo "Is it morning? Please answer yes or no"

read timeofday

case "$timeofday" in

"yes") echo "Good Morning";;
"no") echo "Good Afternoon";;

0"y") echo "Good Morning";;

"n") echo "Good Afternoon";;
*) echo "Soory, answer not recognized";;

esac

exit 0

The value in the varaible timeofday is compared to various strings. When a match is
made, the associated echo command is executed.

Here is a case where multiple strings are tested at a time, to do the some action.

case "$timeofday" in
"yes" | "y" | "yes" | "YES") echo "good Morning";;
"n"* | "N"*) <echo "Good Afternoon";;

*) < echo "Sorry, answer not recognized";;
0esac

How It Works

The above has sever strings tested for each possible statement.

Here is a case statement that executes multiple statements for each case.

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 57

case "$timeofday" in
"yes" | "y" | "Yes" | "YES")

echo "Good Morning"
echo "Up bright and early this morning"
;;

[nN]*)
echo "Good Afternoon"
;;

*)

echo "Sorry, answer not recognized"

echo "Please answer yes or noo"

exit 1
;;

esac

How It Works

When a match is found to the variable value of timeofday, all the statements up to the
;; are executed.

Arithmetic in shell

The $((...)) is a better alternative to the expr command, which allows simple
arithmetic commands to be processed.

x=$(($x+1))

Parameter Expansion

Using { } around a variable to protect it against expansion.

#!/bin/sh

for i in 1 2

do

my_secret_process ${i}_tmp
done

Here are some of the parameter expansion

How It Works

The try it out exercise uses parameter expansion to demonstrate how parameter expansion works.

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Dept. of CSE, MRCET Page 58

Shell Script Examples

Example

#!/bin/sh

echo "Is it morning? (Answer yes or no)"

read timeofday

 if [$timeofday = "yes"];

 then

 echo "Good Morning"

else

echo "Good afternoon"

fi

exit 0

elif - Doing further Checks

#!/bin/sh

echo "Is it morning? Please answer yes or no"

read timeofday

if [$timeofday = "yes"]; then

echo "Good Morning"

elif [$timeofday = "no"]; then

echo "Good afternoon"

else

 echo "Wrong answer! Enter yes or no"

exit 1

 exit 0

 exit 0

fi

Interrupt Processing-trap

The trap command is used for secifying the actions to take on receipt of signals.

It syntax is:

trap command signal
Here are some of the signals.

How It Works
The try it out section has you type in a shell script to test the trap command. It creates a
file and keeps saying that it exists until youu cause a control-C interrupt. It does it all
again.

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Department of CSE, MRCET 59 | P a g e

Dept. of CSE, MRCET

Functions

You can define functions inthe shell. The syntax is:

function_name () {
statements

}0

Here is a sample function and its execution.
#!/bin/sh

foo() {

echo "Function foo is executing"
}

echo "script starting"

foo
echo "script ended"

exit 0

How It Works
When the above script runs, it defines the funcion foo, then script echos script
starting, then it runs the functions foo which echos Function foo is executing, then
it echo script ended.

Here is another sample script with a function in it. Save it as my_name

#!/bin/sh

yes_or_no() {
echo "Parameters are $*"
while true
do

echo -n "Enter yes or no"
read x
0case "$x" in

y | yes) return 0;;

n | no) return 1;;

*) echo "Answer yes or no"

esac

done }

echo "Original parameters are $*"

if yes_or_no "IS your naem $1"

then

echo "Hi $1"

else
echo "Never mind"

fi

0exit 0

How It Works When my_name is execute with the statement:

 my_name Rick and Neil

gives the output of:
Original parameters are Rick and Neil
Parameters are Is your name Rick

Enter yes or no

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Department of CSE, MRCET 60 | P a g e

Dept. of CSE, MRCET

no Never mind

Commands
You can execute normal command and built-in commands from a shell
script. Built-in commands are defined and only run inside of the script.

break
It is used to escape from an enclosing for, while or until loop before the controlling
condition has been met.

The : Command The colon command is a null command. It can be used for an alias for true..

Continue

The continue command makes the enclosing for, while, or until loop continue
at the next iteration.

The Command

The dot command executes the command in the current shell:

. shell_script

echo
The echo command simply outputs a string to the standard output device followed by
a newline character.

Eval The eval command evaluates arguments and give s the results.

exec
The exec command can replace the current shell with a different program. It can also
modify the current file descriptors.
exit n The exit command causes the script to exit with exit code n. An exit code of 0 means

success.

Here are some other codes.

export The export command makes the variable named as its parameter available in subshells.

expr The expr command evaluates its arguments as an expression.

0x = `expr $x + 1`

Here are some of its expression evaluations

Linux Programming UNIT-I IV B.Tech I Sem
(R15)

Department of CSE, MRCET 61 | P a g e

Dept. of CSE, MRCET

printf
The printf command is only available in more recent shells. It works similar
to the echo command. Its general form is:

printf "format string" parameter1 parameter2 ...

Here are some characters and format specifiers.

return

The return command causes functions to return. It can have a value parameter which it returns.

set

The set command sets the parameter variables for the shell.

shift

The shift command moves all the parameters variables down by one, so $2
becomes $1, $3 becomes $2, and so on.

unset

The unset command removes variables or functions from the environment.

Command Execution
The result of $(command) is simply the output string from the command, which is
then available to the script.

Debugging Shell Scripts
When an error occurs in a script, the shell prints out the line number with an error.
You can use the set command to set various shell option. Here are some of them.

 Linux Programming UNIT-II IV B.Tech I Sem (R15)

Department of CSE, MRCET 1 | P a g e

 Unit II – Files and Directories

Working with Files

In this chapter we learn how to create, open, read, write, and close files.

UNIX File Structure

In UNIX, everything is a file.

Programs can use disk files, serial ports, printers and other devices in the exactly the same

way as they would use a file.

Directories, too, are special sorts of files.

 Directories

As well as its contents, a file has a name and 'administrative information', i.e. the file's

creation/modification date and its permissions.

The permissions are stored in the inode, which also contains the length of the file and

where on the disc it's stored.

A directory is a file that holds the inodes and names of other files. Files

are arranged in directories, which also contain subdirectories.

A user, neil, usually has his files stores in a 'home' directory, perhaps /home/neil.

Files and Devices

Even hardware devices are represented (mapped) by files in UNIX. For example, as

root, you mount a CD-ROM drive as a file,

$ mount -t iso9660 /dev/hdc /mnt/cd_rom

$ cd /mnt/cd_rom

 Linux Programming UNIT-II IV B.Tech I Sem (R15)

Department of CSE, MRCET 2 | P a g e

/dev/console - this device represents the system console.

/dev/tty - This special file is an alias (logical device) for controlling terminal

(keyboard and screen, or window) of a process.

/dev/null - This is the null device. All output written to this device is discarded.

System Calls and Device Drivers

System calls are provided by UNIX to access and control files and devices. A

number of device drivers are part of the kernel.

The system calls to access the device drivers include:

Library Functions

 To provide a higher level interface to device and disk files, UNIIX provides a number of

standard libraries.

 Linux Programming UNIT-II IV B.Tech I Sem (R15)

Department of CSE, MRCET 3 | P a g e

Low-level File Access

Each running program, called a process, has associated with it a number of file

descriptors.

 When a program starts, it usually has three of these descriptors already opened. These are:

The write system call arranges for the first n bytes bytes from buf to be written to the file

associated with the file descriptor files.

With this knowledge, let's write our first program, simple_write.c:

Here is how to run the program and its output.

$ simple_write

Here is some data

$

read

The read system call reads up to nbytes of data from the file associated with the file decriptor

fildes and places them in the data area buf.

This program, simple_read.c, copies the first 128 bytes of the standard input to the standard

output.

 Linux Programming UNIT-II IV B.Tech I Sem (R15)

Department of CSE, MRCET 4 | P a g e

If you run the program, you should see:

$ echo hello there | simple_read

hello there

$ simple_read < draft1.txt

Files

open

To create a new file descriptor we need to use the open system call.

open establishes an access path to a file or device.

The name of the file or device to be opened is passed as a parameter, path, and the

oflags parameter is used to specify actions to be taken on opening the file.

The oflags are specified as a bitwise OR of a mandatory file access mode and other optional

modes. The open call must specify one of the following file access modes:

The call may also include a combination (bitwise OR) of the following optional modes in

the oflags parameter:

 Linux Programming UNIT-II IV B.Tech I Sem (R15)

Department of CSE, MRCET 5 | P a g e

Initial Permissions

When we create a file using the O_CREAT flag with open, we must use the three parameter

form. mode, the third parameter, is made form a bitwise OR of the flags defined in the

header file sys/stat.h. These are:

For example

Has the effect of creating a file called myfile, with read permission for the owner and execute

permission for others, and only those permissions.

umask

The umask is a system variable that encodes a mask for file permissions to be used when a file is

created.

 You can change the variable by executing the umask command to supply a new value.

The value is a three-digit octal value. Each digit is the results of ANDing values from 1, 2, or 4.

 Linux Programming UNIT-II IV B.Tech I Sem (R15)

Department of CSE, MRCET 6 | P a g e

For example, to block 'group' write and execute, and 'other' write, the umask would be:

Values for each digit are ANDed together; so digit 2 will have 2 & 1, giving 3. The resulting

umask is 032.

close

We use close to terminate the association between a file descriptor, fildes, and its file.

ioctl

ioctl is a bit of a rag-bag of things. It provides an interface for controlling the behavior of

 Linux Programming UNIT-II IV B.Tech I Sem (R15)

Department of CSE, MRCET 7 | P a g e

devices, their descriptors and configuring underlying services.

ioctl performs the function indicated by cmd on the object referenced by the descriptor files.

Try It Out - A File Copy Program

We now know enough about the open, read and write system calls to write a low- level

program, copy_system.c, to copy one file to another, character by character.

Running the program will give the following:

We used the UNIX time facility to measure how long the program takes to run. It took 2

 Linux Programming UNIT-II IV B.Tech I Sem (R15)

Department of CSE, MRCET 8 | P a g e

and one half minutes to copy the 1Mb file.

We can improve by copying in larger blocks. Here is the improved

copy_block.c program.

Now try the program, first removing the old output file:

The revised program took under two seconds to do the copy.

Other System Calls for Managing Files

Here are some system calls that operate on these low-level file descriptors.

lseek

The lseek system call sets the read/write pointer of a file descriptor, fildes. You use it to set

where in the file the next read or write will occur.

 Linux Programming UNIT-II IV B.Tech I Sem (R15)

Department of CSE, MRCET 9 | P a g e

The offset parameter is used to specify the position and the whence parameter specifies

how the offset is used.

whence can be one of the following:

fstat, stat and lstat

The fstat system call returns status information about the file associated with an open file

descriptor.

The members of the structure, stat, may vary between UNIX systems, but will include:

The permissions flags are the same as for the open system call above. File-type flags include:

 Linux Programming UNIT-II IV B.Tech I Sem (R15)

Department of CSE, MRCET 10 | P a g e

Other mode flags include:

Masks to interpret the st_mode flags include:

There are some macros defined to help with determining file types. These include:

To test that a file doesn't represent a directory and has execute permisson set for the owner and

no other permissions, we can use the test:

 Linux Programming UNIT-II IV B.Tech I Sem (R15)

Department of CSE, MRCET 11 | P a g e

dup and dup2

The dup system calls provide a way of duplicating a file descriptor, giving two or more,

different descriptors that access the same file.

The Standard I/O Library

The standard I/O library and its header file stdio.h, provide a versatile interface to low-level

I/O system calls.

Three file streams are automatically opened when a program is started. They are stdin,

stdout, and stderr.

Now, let's look at:

 Linux Programming UNIT-II IV B.Tech I Sem (R15)

Department of CSE, MRCET 12 | P a g e

fopen

The fopen library function is the analog of the low level open system call.

fopen opens the file named by the filename parameter and associates a stream with it. The mode

parameter specifies how the file is to be opened. It's one of the following strings:

If successful, fopen returns a non-null FILE * pointer.

fread

The fread library function is used to read data from a file stream. Data is read into a data buffer

given by ptr from the stream, stream.

fwrite

The fwrite library call has a similar interface to fread. It takes data records from the specified

 Linux Programming UNIT-II IV B.Tech I Sem (R15)

Department of CSE, MRCET 13 | P a g e

data buffer and writes them to the output stream.

fclose

The fclose library function closes the specified stream, causing any unwritten data to be written.

fflush

The fflush library function causes all outpstanding data on a file stream to be written immediately.

fseek

The fseek function is the file stream equivalent of the lseek system call. It sets the position

in the stream for the next read or write on that stream.

fgetc, getc, getchar

The fgetc function returns the next byte, as a character, from a file stream. When it reaches

the end of file, it returns EOF.

The getc function is equivalent to fgetc, except that you can implement it as a macro.

The getchar function is equivalent to getc(stdin) and reads the next character from the

standard input.

fputc, putc, putchar

 Linux Programming UNIT-II IV B.Tech I Sem (R15)

Department of CSE, MRCET 14 | P a g e

The fputc function writes a character to an output file stream. It returns the value it has written,

or EOF on failure.

The function putc is quivalent to fputc, but you may implement it as a macro.

The putchar function is equivalent to putc(c,stdout), writing a single character to the standard

output.

fgets, gets

 The fgets function reads a string from an input file stream. It writes characters to the string pointed to

 by s until a newline is encountered, n-1 characters have been transferred or the end of file is reached.

Formatted Input and Output

There are library functions for producing output in a controlled fashion.

printf, fprintf and sprintf

The printf family of functions format and output a variable number of arguments of different

types. Ordinary characters are passed unchanged into the output. Conversion specifiers cause

printf to fetch and format additional argumetns passed as parameters. They are start with a %.

For example

which produces, on the standard output:

Some numbers: 1, 2, and 3

Here are some of the most commonly used conversion specifiers:

 Linux Programming UNIT-II IV B.Tech I Sem (R15)

Department of CSE, MRCET 15 | P a g e

Here's another example:

This produces:

Hello Miss A Mathew, aged 6.5

Field specifiers are given as numbers immediatley after the % character in a

conversion specifier. They are used to make things clearer.

The printf function returns an integer, the number of characters written.

scanf, fscanf and sscanf

\
The scanf family of functions work in a similar way to the printf group, except that thye read

items from a stream and place vlaues into variables.

The format string for scanf and friends contains both ordinary characters and

conversion specifiers.

Here is a simple example:

 Linux Programming UNIT-II IV B.Tech I Sem (R15)

Department of CSE, MRCET 16 | P a g e

The call to scanf will succeed and place 1234 into the variable num given either if the following

inputs.

Other conversion specifiers are:

Given the input line,

this call to scanf will correctly scan four items:

In general, scanf and friends are not highly regarded, for three reasons:

Other Stream Functions

 Linux Programming UNIT-II IV B.Tech I Sem (R15)

Department of CSE, MRCET 17 | P a g e

Other library functions use either stream paramters or the standard streams stdin, stdout,

stderr:

You can use the file stream functions to re-implement the file copy program, by using library

functions.

Try It Out - Another File Copy Program

This program does the character-by-character copy is accomplished using calls to the functions

referenced in stdio.h.

Running this program as before, we get:

$ time copy_stdio

1.69user 0.78system 0:03.70elapsed 66%CPU This

time, the program runs in 3.7 seconds.

Stream Errors
To indicate an error, many of the stdio library functions return out of range values, such as

null pointers or the constant EOF.

 Linux Programming UNIT-II IV B.Tech I Sem (R15)

Department of CSE, MRCET 18 | P a g e

In these cases, the error is indicated in the external variable errno:

You can also interrogate the state of a file stream to determine whether an error has occurred,

or the end of file has been reached.

The ferror function tests the error indicator for a stream and returns non-zero if its set, zero otherwise.

The feof function tests the end-of-file indicator within a stream and returns non-zero if it is set

zero otherwise.

You use it like this:

The clearerr function clears the end-of-file and error indicators for the stream to which stream

points.

Streams and File Descriptors

Each file stream is associated with a low level file descriptor.

You can mix low-level input and output operations with higher level stream operations, but this

is generally unwise.

The effects of buffering can be difficult to predict.

File and Directory Maintenance

The standard libraries and system calls provide complete control over the creation and

maintenance of files and directories.

chmod

 Linux Programming UNIT-II IV B.Tech I Sem (R15)

Department of CSE, MRCET 19 | P a g e

You can change the permissions on a file or directory using the chmod system call. Tis forms

the basis of the chmod shell program.

chown

A superuser can change the owner of a file using the chown system call.

unlink, link, symlink

We can remove a file using unlink.

The unlink system call edcrements the link count on a file. The

link system call cretes a new link to an existing file.

The symlink creates a symbolic link to an existing file.

mkdir, rmdir

We can create and remove directories using the mkdir and rmdir system calls.

The mkdir system call makes a new directory with path as its name.

 The rmdir system call removes an empty directory.

chdir, getcwd

A program can naviagate directories using the chdir system call.

 Linux Programming UNIT-II IV B.Tech I Sem (R15)

Department of CSE, MRCET 20 | P a g e

A program can determine its current working directory by calling the getcwd library function.

The getcwd function writes the name of the current directory into the given buffer, buf.

Scanning Directories

The directory functions are declared in a header file, dirent.h. They use a structure, DIR, as a

basis for directory manipulation.

Here are these functions:

opendir

The opendir function opens a directory and establishes a directory stream.

readdir

The readdir function returns a pointer to a structure detailing the next directory entry in the

directory stream dirp.

The dirent structure containing directory entry details included the following entries:

telldir

 Linux Programming UNIT-II IV B.Tech I Sem (R15)

Department of CSE, MRCET 21 | P a g e

The telldir function returns a value that records the current position in a directory stream.

Seekdir

 The seekdir function sets the directory entry pointer in the directory stream given by dirp.

closedir

The closedir function closes a directory stream and frees up the resources associated with it.

Try It Out - A Directory Scanning Program

1. The printdir, prints out the current directory. It will recurse for

subdirectories.

 Linux Programming UNIT-II IV B.Tech I Sem (R15)

Department of CSE, MRCET 22 | P a g e

2. Now we move onto the main function:

 Linux Programming UNIT-II IV B.Tech I Sem (R15)

Department of CSE, MRCET 23 | P a g e

The program produces output like this (edited for brevity):

How It Works

After some initial error checking, using opendir, to see that the directory

exists, printdir makes a call to chdir to the directory specified. While the entries returned

by readdir aren't null, the program checks to see whether the entry is a directory. If it isn't,

it prints the file entry with indentation depth.

Here is one way to make the program more general.

You can run it using the command:

$ printdir /usr/local | more

Errors

System calls and functions can fail. When they do, they indicate the reason for their failure by

setting the value of the external varaible errno.

The values and meanings of the errors are listed in the header file errno.h. They include:

 Linux Programming UNIT-II IV B.Tech I Sem (R15)

Department of CSE, MRCET 24 | P a g e

There are a couple of useful functions for reporting errors when they occur:

strerror and perror.

The strerror function maps an error number into a string describing the type of error that has

occurred.

The perror function also maps the current error, as reported in errno, into a string and

prints it on the standard error stream.

It's preceded by the message given in the string s (if not null), followed by a colon and a

space. For example:

might give the following on the standard error output:

Advanced Topics

 Linux Programming UNIT-II IV B.Tech I Sem (R15)

Department of CSE, MRCET 25 | P a g e

fcntl

The fcntl system call provides further ways to manipulate low level file descriptors.

It can perform miscellaneous operations on open file descriptors. The call,

returns a new file descriptor with a numerical value equal to or greater than the integer

newfd.

The call, returns the file descriptor flags as defined in fcntl.h. The call,

is used to set the file descriptor flags, usually just FD_CLOEXEC.

The calls,

respectively get and set the file status flags and access modes.

mmap

The mmap function creates a pointer to a region of memory associated with the contents of the

file accessed through an open file descriptor.

You can use the addr parameter to request a particular memory address.

The prot parameter is used to set access permissions for the memory segment. This is a bitwise

OR of the following constant values.

The flags parameter controls how changes made to the segment by the program are reflected

elsewhere.

 Linux Programming UNIT-II IV B.Tech I Sem (R15)

Department of CSE, MRCET 26 | P a g e

The msync function causes the changes in part or all of the memory segment to be written back

to (or read from) the mapped file.

The part of the segment to be updated is given by the passed start address, addr, and length,

len. The flags parameter controls how the update should be performed.

The munmap function releases the memory segment.

Try It Out - Using mmap

1. The following program, mmap_eg.c shows a file of structures being updated using

mmap and array-style accesses.

Here is the definition of the RECORD structure and the create NRECORDS versions each

recording their

number.

 Linux Programming UNIT-II IV B.Tech I Sem (R15)

Department of CSE, MRCET 27 | P a g e

2. We now change the integer value of record 43 to 143, and write this to the 43rd record's

string:

Department of CSE, MRCET 28 | P a g e

 Linux Programming UNIT-II IV B.Tech I Sem (R15)

3. We now map the records into memory and access the 43rd record in order to change

the integer to 243 (and update the record string), again using memory mapping:

Summary

This chapter showed how LINUX provides direct access to files and devices..

 Linux Programming UNIT-III IV B.Tech I Sem (R15)

Department of CSE, MRCET 1 | P a g e

Unit III - Processes and Signals

Processes and Signals

Processes and signals form a fundamental part of the UNIX operating environment,

controlling almost all activities performed by a UNIX computer system.

Here are some of the things you need to understand.

What is a Process?

The X/Open Specification defines a process as an address space and single thread of control

that executes within that address space and its required system resources.

A process is, essentially, a running program.

Process Structure

Here is how a couple of processes might be arranged within the operating system.

Each process is allocated a unique number, a process identifier, or PID.

The program code that will be executed by the grep command is stored in a disk file. The

system libraries can also be shared.

A process has its own stack space.

The Process Table

The UNIX process table may be though of as a data structure describing all of the processes

that are currently loaded.

 Linux Programming UNIT-III IV B.Tech I Sem (R15)

Department of CSE, MRCET 2 | P a g e

Viewing Processes

We can see what processes are running by using the ps command. Here is

some sample output:

The PID column gives the PIDs, the TTY column shows which terminal started the process,

the STAT column shows the current status, TIME gives the CPU time used so far and the

COMMAND column shows the command used to start the process.

Let's take a closer look at some of these:

The initial login was performed on virtual console number one (v01). The shell is running

bash. Its status is s, which means sleeping. Thiis is because it's waiting for the X Windows

sytem to finish.

 X Windows was started by the command startx. It won't finished until we exit from

X. It too is sleeping.

The fvwm is a window manager for X, allowing other programs to be started and windows to be arranged on the

screen.

This process represents a window in the X Windows system. The shell, bash, is running in the new window. The

window is running on a new pseudo terminal (/dev/ptyp0) abbreviated pp0.

This is the EMACS editor session started from the shell mentioned above. It uses the pseudo

terminal.

 Linux Programming UNIT-III IV B.Tech I Sem (R15)

Department of CSE, MRCET 3 | P a g e

This is a clock program started by the window manager. It's in the middle of a one- minute

wait between updates of the clock hands.

System Processes

Let's look at some other processes running on this Linux system. The output has been

abbreviated for clarity:

Here we can see one very important process indeed:

In general, each process is started by another, known as its parent process. A process so started is known as a

child process.

When UNIX starts, it runs a single program, the prime ancestror and process number one: init.

One such example is the login procedure init starts the getty program once for each terminal

that we can use to long in.

These are shown in the ps output like this:

Process Scheduling

One further ps output example is the entry for the ps command itself:

This indicates that process 192 is in a run state (R) and is executing the command ps- ax.

We can set the process priority using nice and adjust it using renice, which reduce the priority of

a process by 10. High priority jobs have negative values.

Using the ps -l (forlong output), we can view the priority of processes. The value we are

interested in is shown in the NI (nice) column:

Here we can see that the oclock program is running with a default nice value. If it had been

stated with the command,

it would have been allocated a nice value of +10.

We can change the priority of a ruinning process by using the renice command,

 Linux Programming UNIT-III IV B.Tech I Sem (R15)

Department of CSE, MRCET 4 | P a g e

So that now the clock program will be scheduled to run less often. We can see the modified

nice value with the ps again:

Notice that the status column now also contains N, to indicate that the nice value has changed

from the default.

Starting New Processes

We can cause a program to run from inside another program and thereby create a new process by

using the system. library function.

The system function runs the command passed to it as string and waits for it to

complete.

The command is executed as if the command,

has been given to a shell.

Try It Out - system

1. We can use system to write a program to run ps for us.

2. When we compile and run this program, system.c, we get the following:

 Linux Programming UNIT-III IV B.Tech I Sem (R15)

Department of CSE, MRCET 5 | P a g e

3. The system function uses a shell to start the desired program.

We could put the task in the background, by changing the function call to the following:

Now, when we compile and run this version of the program, we get:

How It Works

In the first example, the program calls system with the string "ps -ax", which executes

the ps program. Our program returns from the call to system when the ps command is

finished.

In the second example, the call to system returns as soon as the shell command finishes. The

shell returns as soon as the ps program is started, just as would happen if we had typed,

at a shell prompt.

Replacing a Process Image

There is a whole family of related functions grouped under the exec heading. They differ in

the way that they start processes and present program arguments.

 Linux Programming UNIT-III IV B.Tech I Sem (R15)

Department of CSE, MRCET 6 | P a g e

The exec family of functions replace the current process with another created according to the

arguments given.

If we wish to use an exec function to start the ps program as in our previous examples, we have

the following choices:

Try It Out - exclp

Let's modify our example to use an exexlp call.

 Linux Programming UNIT-III IV B.Tech I Sem (R15)

Department of CSE, MRCET 7 | P a g e

Now, when we run this program, pexec.c, we get the usual ps output, but no Done. message

at all.

Note also that there is no reference to a process called pexec in the output:

How It Works

The program prints its first message and then calls execlp, which searches the

directories given by the PATH environment variable for a program called ps.

It then executes this program in place of our pexec program, starting it as if we had given the

shell command:

Duplicating a Process Image

To use processes to perform more than one function at a time, we need to create an entirely

separate process from within a program.

 Linux Programming UNIT-III IV B.Tech I Sem (R15)

Department of CSE, MRCET 8 | P a g e

We can create a new process by calling fork. This system call duplicates the current process.

Combined with exec, fork is all we need to create new processes to do our bidding.

The fork system call creates a new child process, identical to the calling process except that the

new process has a unique process ID and has the calling process as its parent PID.

A typical code fragment using fork is:

Try It Out - fork

Let's look at a simple example, fork.c:

 Linux Programming UNIT-III IV B.Tech I Sem (R15)

Department of CSE, MRCET 9 | P a g e

This program runs as two process. A child prints a message five times. The parent prints a

message only three times.

How It Works

When the call to fork is made, this program divides into two separate processes.

 Linux Programming UNIT-III IV B.Tech I Sem (R15)

Department of CSE, MRCET 10 | P a g e

Waiting for a Process

We can arrange for the parent process to wait until the child finishes before continuing by calling

wait.

The wait system call causes a parent process to pause until one of its child processes dies or is

stopped.

We can interrogate the status information using macros defined in sys/wait.h. These include:

Try It Out - wait

1. Let's modify our program slightly so we can wait for and examine the child process exit

status. Call the new program wait.c.

 Linux Programming UNIT-III IV B.Tech I Sem (R15)

Department of CSE, MRCET 11 | P a g e

2. This section of the program waits for the child process to finish:

 Linux Programming UNIT-III IV B.Tech I Sem (R15)

Department of CSE, MRCET 12 | P a g e

When we run this program, we see the parent wait for the child. The output

isn't confused and the exit code is reported as expected.

How It Works

The parent process uses the wait system call to suspend its own execution

until status information becomes available for a child process.

Zombie Processes

When a child process terminates, an association with its parent survives

until the parent in turn either terminates normally or calls wait.

This terminated child process is known as a zombie process.

Try It Out - Zombies

fork2.c is jsut the same as fork.c, except that the number of messages

 Linux Programming UNIT-III IV B.Tech I Sem (R15)

Department of CSE, MRCET 13 | P a g e

printed by the child and paent porcesses is reversed.

Here are the relevant lines of code:

How It Works

If we run the above program with fork2 & and then call the ps program

after the child has finished but before the parent has finished, we'll see a

line like this:

There's another system call that you can use to wail for child

processes. It's called waitpid and youu can use it to wait for a

specific process to terminate.

If we want to have a parent process regularly check whether a specific child

process had terminated, we could use the call,

which will return zero if the child has not terminated or stopped or child_pid if it has.

Input and Output Redirection

We can use our knowledge of processes to alter the behavior of

programs by exploiting the fact that open file descriptors are

 Linux Programming UNIT-III IV B.Tech I Sem (R15)

Department of CSE, MRCET 14 | P a g e

preserved across calls

to fork and exec.

Try It Out - Redirection

1. Here's a very simple filter program, upper.c, to convert all characters to uppercase:

When we run this program, it reads our input and converts it:

We can, of course, use it to convert a file to uppercase by using the shell redirection:

$ cat file.txt

this is the file, file.txt, it is all lower case.

$ upper < file.txt

THIS IS THE FILE, FILE.TXT, IT IS ALL LOWER CASE.

2. What if we want to use this filter fromwithin another program? This

code, useupper.c, accepts a file name as an argument and will respond with

an error if called incorrectly:

 Linux Programming UNIT-III IV B.Tech I Sem (R15)

Department of CSE, MRCET 15 | P a g e

3. The done, we reopen the standard input, again checking for any errors

as we do so, and then use execl to call upper:

4. don't forget that execl replaces the current process; provided there is

no error, the remaining lines are not executed:

How It Works

when we run this program, we can give it a file to convert to

uppercase. The job is done by the program upper. The program is

executed by:

Because open file descriptors are preserved across the call to execl,

the upper program runs exactly as it would have under the shell command:

Threads

UNIX processes can cooperate; they can send each other messages

and they can interrupt one another.

There is a class of process known as a thread which are distinct from

processes in that they are separate execution streams within a single

process.

Signals

A signal is an event generated by the UNIX system in response to

some condition, upon receipt of which a process may in turn take some

action.

Signal names are defined in the header file signal.h. They all begin

with SIG and include:

 Linux Programming UNIT-III IV B.Tech I Sem (R15)

Department of CSE, MRCET 16 | P a g e

Additional signals include:

If the shell and terminal driver are configured normally, typing the

interrupt character (Ctrl-C) at the keyboard will result in the SIGINT

signal being sent to the foreground process. This will cause the program to

terminate.

We can handle signals using the signal library function.

The signal function itself returns a function of the same type, which is the

previous value of the function set up to handle this signal, or one of these

tow special values:

 Linux Programming UNIT-III IV B.Tech I Sem (R15)

Department of CSE, MRCET 17 | P a g e

Try It Out - Signal Handling

1. We'll start by writing the function which reacts to the signal which is

passed in the parameter sig. Let's call it ouch:

2. The main function has to intercept the SIGINT signal generated

when we type Ctrl-C.

For the rest of the time, it just sits in an infinite loop, printing a

message once a second:

3. While the program is running, typing Ctrl-C causes it to react and then continue.

When we type Ctrl-C again, the program ends:

 Linux Programming UNIT-III IV B.Tech I Sem (R15)

Department of CSE, MRCET 18 | P a g e

How It Works

The program arranges for the function ouch to be called when we type

Ctrl-C, which gives the SIGINT signal.

Sending Signals

A process may send a signal to itself by calling raise.

A process may send a signal to another process, including itself, by calling kill.

Signals provide us with a useful alarm clock facility.

The alarm function call can be used by a process to schedule a

SIGALRM signal at some time in the future.

Try It Out - An Alarm Clock

1. In alarm.c, the first function, ding, simulates an alarm clock:

 Linux Programming UNIT-III IV B.Tech I Sem (R15)

Department of CSE, MRCET 19 | P a g e

2. In main, we tell the child process to wait for five seconds

before sending a SIGALRM signal to its parent:

The parent process arranges to catch SIGALRM with a call to signal and then waits for the

inevitable.

When we run this program, it pauses for five seconds while it waits for

the simulated alarm clock.

This program introduces a new function, pause, which simply causes the program to

 Linux Programming UNIT-III IV B.Tech I Sem (R15)

Department of CSE, MRCET 20 | P a g e

suspend execution until a signal occurs.

It's declared as,

How It Works

The alarm clock simulation program starts a new process via fork. This child process

sleeps for five seconds and then sends a SIGALRM to its parent.A Robust Signals

Interface X/Open specification recommends a newer programming interface for signals

that is more robust: sigaction.

The sigaction structure, used to define the actions to be taken on receipt

of the signal specified by sig, is defined in signal.h and has at least the

following members:

Try It Out - sigaction

Make the changes shown below so that SIGINT is intercepted by

sigaction. Call the new program ctrlc2.c.

Running the program, we get a message when we type Ctrl-C because

SIGINT is handled repeated;y by sigaction. Type Ctrl-\ to terminate

the program.

 Linux Programming UNIT-III IV B.Tech I Sem (R15)

Department of CSE, MRCET 21 | P a g e

How It Works

The program calls sigaction instead of signal to set the signal handler for

Ctrl-C (SIGINT) to the function ouch.

Signal Sets

The header file signal.h defines the type sigset_t and functions used to

manipulate sets of signals.

The function sigismember determines whether the given signal is

amember of a signal set.

The process signal mask is set or examined by calling the function sigprocmask.

sigprocmask can change the process signal mask in a number of ways

 Linux Programming UNIT-III IV B.Tech I Sem (R15)

Department of CSE, MRCET 22 | P a g e

according to the how argument.

The how argument can be one of:

If a signal is blocked by a process, it won't be delivered, but will remain pending.

A program can determine which of its blocked signals ar pending

by calling the function sigpending.

 A process can suspend execution until the delivery of one of a set of signals by calling

sigsuspend.

This is a more general form of the pause function we met earlier.

sigaction Flags
The sa_flags field of the sigaction structure used in sigaction may

contain the following values to modify signal behavior

Functions that are safe to call inside a signal handler, those guaranteed by the X/Open

specification either to be re-entrant or not to raise signals them

selvesinclude:

 Linux Programming UNIT-III IV B.Tech I Sem (R15)

Department of CSE, MRCET 23 | P a g e

Common Signal Reference

Here we list the signals that UNIX programs typically need to get involved

with, including the default behaviors:

 Linux Programming UNIT-III IV B.Tech I Sem (R15)

Department of CSE, MRCET 24 | P a g e

The default action signals is abnormal termination of the process.

By default, these signals also cause abnormal termination. Additionally, implementation-

dependent actions, such as creation of a core file, may occur.

A process is stopped by default on receipt of one of the above signals.

SIGCONT restarts a stopped process and is ignored if received by a

process which is not stopped.

The SIGCHLD signal is ignored by default.

Summary

We have seen how processes are a fundamental part of the LINUX operation system. We

have also learned to start, terminate, and signal between processes.

 Linux Programming UNIT-IV IV B.Tech I Sem (R15)

Department of CSE, MRCET 1 ||Page

P a g e

 UNIT-IV

Interprocess communication, Message Queues and Semaphores

 Interprocess Communication

Introduction to IPC

IPC between processes on a single computer system

IPC between processes on different systems

Pipes- creation

IPC between related processes using unnamed pipes

FIFOs- creation, IPC between unrelated processes using FIFOs(named pipes)

Differences Between Unnamed And Named Pipes

popen & pclose library functions.

 Message Queues- Kernel support for

messages

APIs for message queues

client/server example.

Semaphores-Kernel support for semaphores

APIs for semaphores

File locking with Semaphores

 Linux Programming UNIT-IV IV B.Tech I Sem (R15)

Department of CSE, MRCET 2 ||Page

P a g e

Introduction to IPC

Interprocess Communication- “Interprocess communication(IPC) is the transfer of data

among different processes”.

Interprocess communication (IPC) includes thread synchorization and data exchange between

threads beyond the process boundaries. If threads belong to the same process, they execute in the

same address space, i.e. they can access global (static) data or heap directly, without the help of

the operating system. However, if threads belong to different processes, they cannot access each

others address spaces without the help of the operating system.

There are two fundamentally different approaches in IPC:

 processes are residing on the same computer

 processes are residing on different computers

The first case is easier to implement because processes can share memory either in the user space

or in the system space. This is equally true for uniprocessors and multiprocessors.

In the second case the computers do not share physical memory, they are connected via I/O

device(for example serial communication or Ethernet). Therefore the processes residing in

different computers can not use memory as a means for communication.

IPC between processes on a Single System

Most of this chapter is focused on IPC on a single computer system, including four general

approaches:

 Shared memory

 Messages

 Pipes

 Sockets

The synchronization objects considered in the previous chapter normally work across the process

boundaries (on a single computer system). There is one addition necessary however: the

synchronization objects must be named. The handles are generally private to the process, while

the object names, like file names, are global and known to all processes.

h = init_CS("xxx");

h = init_semaphore(20,"xxx");

h = init_event("xxx");

h = init_condition("xxx");

h = init_message_buffer(100,"xxx");

IPC between processes on different systems

 Linux Programming UNIT-IV IV B.Tech I Sem (R15)

Department of CSE, MRCET 3 ||Page

P a g e

IPC between processes on different systems

IPC is Inter Process Communication, more of a technique to share data across different processes

within one machine, in such a way that data passing binds the coupling of different processes.

 The first, is using memory mapping techniques, where a memory map is created, and others

open the memory map for reading/writing...

 The second is, using sockets, to communicate with one another...this has a high overhead, as

each process would have to open up the socket, communicate across... althougheffective

 The third, is to use a pipe or a named pipe, a very good example

PIPES:

A pipe is a serial communication device (i.e., the data is read in the order in which it was

written),which allows a unidirectional communication. The data written to end

isreadbackfromtheotherend.

The pipe is mainly used to communicate between two threads in a single process or between

parent and child process. Pipes can only connect the related process. In shell,

thesymbolcanbeusedtocreateapipe.

In pipes the capacity of data is limited. (i.e.) If the writing process is faster than the reading

process which consumes the data, the pipe cannot store the data. In this situation the writer

process will block until more capacity becomes available. Also if the reading process tries to

read data when there is no data to read, it will be blocked until the data becomes available. By

this, pipes automatically synchronize the two process.

Creatingpipes:

The pipe() function provides a means of passing data between two programs and also allows to

read and write the data.

#include<unistd.h>

int pipe(int file_descriptor[2]);

pipe()function is passed with an array of file descriptors. It will fill the array with new file

descriptors and returns zero. On error, returns -1 and sets the errno to indicate the reason of

failure.

The file descriptors are connected in a way that is data written to file_ descriptor[1] can be read

back from the file_descriptor[0].

(Note: As this uses file descriptors and not the file streams, we must use read and write system

calls to access the data.)

Pipes are originally used in UNIX and are made even more powerful in Windows 95/NT/2000.

Pipes are implemented in file system. Pipes are basically files with only two file offsets: one for

reading another for writing. Writing to a pipe and reading from a pipe is strictly in FIFO manner.

(Therefore pipes are also called FIFOs).

 Linux Programming UNIT-IV IV B.Tech I Sem (R15)

Department of CSE, MRCET 4 ||Page

P a g e

For efficiency, pipes are in-core files, i.e. they reside in memory instead on disk, as any other

global data structure. Therefore pipes must be restricted in size, i.e. number of pipe blocks must

be limited. (In UNIX the limitation is that pipes use only direct blocks.)Since the pipes have a

limited size and the FIFO access discipline, the reading and writing processes are synchronized

in a similar manner as in case of message buffers. The access functions for pipes are the same as

for files: WriteFile() and ReadFile().

Pipes used as standard input and output:

We can invoke the standard programs, ones that don’t expect a file descriptor as a parameter.

#include<unistd.h>

int dup(int file_descriptor);
int dup2(int file_descriptor_1,

int file_descriptor_2);

The purpose of dup call is to open a new file descriptor, which will refer to the same file as an

existing file descriptor. In case of dup, the value of the new file descriptor is the lowest number

available. In dup2 it is same as, or the first available descriptor greater than the parameter

file_descriptor_2.

We can pass data between process by first closing the file descriptor 0 and call is made to dup.

By this the new file descriptor will have the number 0.As the new descriptor is the duplicate of

an existing one, standard input is changed to have the access. So we have created two file

descriptors for same file or pipe, one of them will be the standard input.

(Note: The same operation can be performed by using the fcntl() function. But compared to this

dup and dup2 are more efficient)

//pipes.c

#include<unistd.h>
#include<stdlib.h>

#include<stdio.h>

#include<string.h>

int main()

{
int data_processed;

int file_pipes[2];

const char some_data[]= "123";

pid_t fork_result;

if(pipe(file_pipes)==0)

{

fork_result=fork();
if(fork_result==(pid_t)-1)

{
fprintf(stderr,"fork failure");

exit(EXIT_FAILURE);

}

 Linux Programming UNIT-IV IV B.Tech I Sem (R15)

Department of CSE, MRCET 5 ||Page

P a g e

if(fork_result==(pid_t)0)

{

close(0);

dup(file_pipes[0]);

close(file_pipes[0]);

close(file_pipes[1]);

execlp("od","od","-c",(char *)0);

exit(EXIT_FAILURE);

}

else

{
close(file_pipes[0]);

data_processed=write(file_pipes[1],

some_data,strlen(some_data)); close(file_pipes[1]);

printf("%d -wrote %d bytes\n",(int)getpid(),data_processed);

}

} exit(EXIT_SUCCESS);
}

The program creates a pipe and then forks. Now both parent and child process will have its own

file descriptors for reading and writing. Therefore totally there are four file descriptors.

The child process will close its standard input with close(0) and calls duo(file_pipes[0]). This

will duplicate the file descriptor associated with the read end. Then child closes its original file

descriptor. As child will never write, it also closes the write file descriptor,

file_pipes[1]. Now there is only one file descriptor 0 associated with the pipe that is standard

input. Next, child uses the exec to invoke any program that reads standard input.

The od command will wait for the data to be available from the user terminal.

Since the parent never read the pipe, it starts by closing the read end that is file_pipe[0]. When

writing process of data has been finished, the write end of the parent is closed and exited. As there

are no file descriptor open to write to pipe, the od command will be able to read the three bytes

written to pipe, meanwhile the reading process will return 0 bytes indicating the end of the file.

There are two types of pipes:

Namedpipes.

Unnamed pipes (Anonymous pipes)

4.6 Named pipes (FIFOs)

Similar to pipes, but allows for communication between unrelated processes.

This is done by naming the communication channel and making it permanent.

Like pipe, FIFO is the unidirectional data stream.

 Linux Programming UNIT-IV IV B.Tech I Sem (R15)

Department of CSE, MRCET 6 ||Page

P a g e

FIFO creation:

int mkfifo (const char *pathname, mode_t mode);

- makes a FIFO special file with name pathname.

(mode specifies the FIFO's permissions, as common in UNIX-like

file systems).

- A FIFO special file is similar to a pipe, except that it is created in
a different way. Instead of being an anonymous communications channel, a

FIFO special file is entered into the file system by calling mkfifo()

Once a FIFO special file has been created, any process can open it for
reading or writing, in the same way as an ordinary file.

A First-in, first-out(FIFO) file is a pipe that has a name in the filesystem. It is also called as

named pipes.

Creation of FIFO:

We can create a FIFO from the command line and within a program.

To create from command line we can use either mknod or mkfifo commands.

$ mknod filename p

$ mkfifo filename

(Note: The mknod command is available only n older versions, you can make use of mkfifo in

new versions.)

To create FIFO within the program we can use two system calls. They are,

#include<sys/types.h>

#include<sys/stat.h>

int mkfifo(const char

*filename,mode_t mode);
int mknod(const char *filename,

mode_t mode|S_IFIFO,(dev_t) 0);

If we want to use the mknod function we have to use ORing process of fileaccess mode with

S_IFIFO and the dev_t value of 0.Instead of using this we can use the simple mkfifo function.

Accessing FIFO:

Let us first discuss how to access FIFO in command line using file commmands. The useful

feature of named pipes is, as they appear in the file system, we can use them in commands.

We can read from the FIFO(empty)

$ cat < /tmp/my_fifo

Now, let us write to the FIFO.

$ echo "Simple!!!" > /tmp/my_fifo
(Note: These two commands should be executed in different terminals because first command

will be waiting for some data to appear in the FIFO.)

 Linux Programming UNIT-IV IV B.Tech I Sem (R15)

Department of CSE, MRCET 7 ||Page

P a g e

FIFO can also be accessed as like a file in the program using low-level I/O functions or C library

I/O functions.

The only difference between opening a regular file and FIFO is the use of open_flag with the

optionO_NONBLOCK. The only restriction is that we can’t open FIFO for reading and writing

with O_RDWR mode.

//fifo1.c

#include <unistd.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <fcntl.h>

#include <limits.h>

#include <sys/types.h>

#include <sys/stat.h>

#define FIFO_NAME "/tmp/my_fifo"

#define BUFFER_SIZE PIPE_BUF

#define TEN_MEG (1024 * 1024 * 10)

int main()

{

int pipe_fd;

int res;

int open_mode = O_WRONLY;
int bytes_sent = 0;

char buffer[BUFFER_SIZE + 1];
if (access(FIFO_NAME, F_OK) == -1) {

res = mkfifo(FIFO_NAME, 0777);

if (res != 0) {

fprintf(stderr, "Could not create fifo %s\n", FIFO_NAME);

exit(EXIT_FAILURE);

}

}

printf("Process %d opening FIFO O_WRONLY\n", getpid());
pipe_fd = open(FIFO_NAME, open_mode);

printf("Process %d result %d\n", getpid(), pipe_fd); if
(pipe_fd != -1) {

while(bytes_sent < TEN_MEG) {
res = write(pipe_fd, buffer, BUFFER_SIZE); if

(res == -1) {

fprintf(stderr, "Write error on pipe\n");

exit(EXIT_FAILURE);

}

}

(void)close(pipe_fd);

}

else { exit(EXIT_FAILURE);

}

 Linux Programming UNIT-IV IV B.Tech I Sem (R15)

Department of CSE, MRCET 8 ||Page

P a g e

printf("Process %d finished\n", getpid());
exit(EXIT_SUCCESS);

}

//fifo2.c

#include <unistd.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <fcntl.h>

#include <limits.h>

#include <sys/types.h>

#include <sys/stat.h>

#define FIFO_NAME "/tmp/my_fifo"

#define BUFFER_SIZE PIPE_BUF int

main()

{
int pipe_fd; int

res;

int open_mode = O_RDONLY; char

buffer[BUFFER_SIZE + 1]; int

bytes_read = 0;

memset(buffer, '\0', sizeof(buffer));
printf("Process %d opening FIFO O_RDONLY\n", getpid());

pipe_fd = open(FIFO_NAME, open_mode);

printf("Process %d result %d\n", getpid(), pipe_fd);

if (pipe_fd != -1) {

do {
res = read(pipe_fd, buffer, BUFFER_SIZE);

bytes_read += res;

} while (res > 0);

(void)close(pipe_fd);

}
else {

exit(EXIT_FAILURE);

}

printf("Process %d finished, %d bytes read\n", getpid(), bytes_read);
exit(EXIT_SUCCESS);

}

Both fifo1.c and fifo2.c programs use the FIFO in blocking mode.

First fifo1.c is executed .It blocks and waits for reader to open the named pipe. Now writer

unblocks and starts writing data to pipe. At the same time, the reader starts reading data from the

pipe.

4.5 Unnamed pipes (Anonymous Pipes)

Anonymous pipes don't have names, therefore they can be used only between related processes

which can inherit the file handles (file descriptors).

 Linux Programming UNIT-IV IV B.Tech I Sem (R15)

Department of CSE, MRCET 9 ||Page

P a g e

Anonymous pipes are typically used to "pipe" two programs: standard output from one program

is redirected to the pipe input (write handle), while the standard input of the second program is

redirected to from the pipe output (read handle). The pipe is created by the parent (usually the

login shell), and the pipe handles are passed to children through the inheritance mechanism.

Anonymous pipes cannot be used across a network. Also, anonymous pipes are unidirectional- in

order to communicate two related processes in both directions, two anonymous pipes must be

created.

Example of Win32 anonymous pipes used for program piping:

//***

// This program implements piping of programs p1.exe and p2.exe

// through an anonymous pipe. The program creates two child processes

// (which execute images p1.exe and p2.exe) and a pipe, then passes

// the pipe handles to the children.

//

// The program is invoked as: pipe p1 p2 (no command line arguments)

//***

#include <windows.h>

#include <iostream.h>

int main(int argc, char *argv[])

{

// Create anonymous (unnamed) pipe
SECURITY_ATTRIBUTES sa;

sa.nLength = sizeof(SECURITY_ATTRIBUTES);
sa.lpSecurityDescriptor = 0;

sa.bInheritHandle = TRUE; // Handles are inheritable (default is FALSE)

HANDLE rh,wh; // Read and write handles of the pipe

if(!CreatePipe(&rh,&wh,&sa,0))

{

cout << "Couldn't create pipe " << GetLastError()<< endl;
return (1);

}
// Create the first child process p1

PROCESS_INFORMATION pi1;

STARTUPINFO si1;

GetStartupInfo(&si1); // Get default startup structure

si1.hStdInput = GetStdHandle(STD_INPUT_HANDLE);

si1.hStdOutput = wh; // Std output of p1 is input to the pipe

si1.dwFlags = STARTF_USESTDHANDLES;

CreateProcess(argv[1], // Name of the p1's image (without ".exe."

0,0,0,

TRUE, // Each open inheritable handle of the
// parent will be inherited by the child

0,0,0,

&si1,&pi1);

CloseHandle(wh); // Pipe handle no longer needed
// Create the second child process p2

 Linux Programming UNIT-IV IV B.Tech I Sem (R15)

Department of CSE, MRCET 10 ||Page

P a g e

PROCESS_INFORMATION pi2;

STARTUPINFO si2;

GetStartupInfo(&si2); // Get default startup structure

si2.hStdInput = rh; // Std input of p2 is otput from the pipe

si2.hStdOutput = GetStdHandle(STD_OUTPUT_HANDLE);

si2.dwFlags = STARTF_USESTDHANDLES;

CreateProcess(0,argv[2], // Name of the p1's image (without ".exe."

0,0,

TRUE, // Each open inheritable handle of the

// parent will be inherited by the child

0,0,0,
&si2,&pi2);

WaitForSingleObject(pi1.hProcess,INFINITE);

CloseHandle(pi1.hProcess);

WaitForSingleObject(pi2.hProcess,INFINITE);

CloseHandle(pi2.hProcess);

CloseHandle(rh);
return(0);

}

Comment:

In order to communicate two processes (P1 and P2) through anonymous pipes by redirecting the

standard I/O, the processes don't have to be aware of the existence of pipes, i.e. their sources and

images don't have to be modified.

4.8 Pipe processing:(popen &pclose library functions)

The process of passing data between two programs can be done with the help of popen() and
pclose() functions.

#include<stdio.h>

FILE *popen(const char *command ,

const char *open-mode);

int pclose(FILE *stream_to_close);

popen():

The popen function allows a program to invoke another program as a new process and either

write the data to it or to read from it. The parameter command is the name of the program to run.

The open_mode parameter specifies in which mode it is to be invoked, it can be only either "r" or

"w". On failure popen() returns a NULL pointer. If you want to perform bi-directional

communication you have to use two pipes.

pclose():

By using pclose(), we can close the filestream associated with popen() after the process started

by it has been finished. The pclose() will return the exit code of the process, which is to be

closed. If the process was already executed a wait statement before calling pclose, the exit status

will be lost because the process has been finished. After closing the filestream, pclose() will wait

for the child process to terminate.

 Linux Programming UNIT-IV IV B.Tech I Sem (R15)

Department of CSE, MRCET 11 ||Page

P a g e

Messagequeue:

This is an easy way of passing message between two process. It provides a way of

sending a block of data from one process to another. The main advantage of using this is, each

block of data is considered to have a type, and a receiving process receives the blocks of data

having different type values independently.

Creation and accessing of a message queue:

You can create and access a message queue using the msgget() function.
#include<sys/msg.h>

int msgget(key_t key,int msgflg);

The first parameter is the key value, which specifies the particular message queue. The special

constant IPC_PRIVATE will create a private queue. But on some Linux systems the message

queue may not actually be private.

The second parameter is the flag value, which takes nine permission flags.

Adding a message:

The msgsnd() function allows to add a message to a message queue.
#include<sys/msg.h>

int msgsnd(int msqid,const void *msg_ptr ,size_t msg_sz,int msgflg);

The first parameter is the message queue identifier returned from an msgget function.

The second parameter is the pointer to the message to be sent. The third parameter is the size of

the message pointed to by msg_ptr. The fourth parameter, is the flag value controls what happens

if either the current message queue is full or within the limit. On success, the function returns 0

and a copy of the message data has been taken and placed on the message queue, on failure -1 is

returned.

Retrieving a message:

The smirch() function retrieves message from the message queue.

#include<sys/msg.h>

int msgsnd(int msqid,const void *msg_ptr

,size_t msg_sz,long int msgtype ,int msgflg);

The second parameter is a pointer to the message to be received.

The fourth parameter allows a simple form of reception priority. If its value is 0,the first

available message in the queue is retreived. If it is greater than 0,the first message type is

retrived. If it is less than 0,the first message that has a type the same a or less than the absolute

value of msgtype is retrieved.

On success, msgrcv returns the number on bytes placed in the receive buffer, the message is

copied into the user-allocated buffer and the data is deleted from the message queue. It returns -1

on error.

Controlling the message queue:

This is very similar that of control function of shared memory.

 Linux Programming UNIT-IV IV B.Tech I Sem (R15)

Department of CSE, MRCET 12 ||Page

P a g e

#include<sys/msg.h>

int msgctl(int msgid,int command,

struct msqid_ds *buf);

The second parameter takes the values as given below:

1.) IPC_STAT - Sets the data in the msqid_ds to reflect the values associated with the message

queue.

2.) IPC_SET - If the process has the permission to do so, this sets the values associated with the

message queue to those provided in the msgid_ds data structure.

3.) IPC_RMID-Deletes the message queue.

(Note: If the message queue is deleted while the process is writing in a msgsnd or msgrcv

function, the send or receive function will fail.

Client /server Example:

//msgq1.c

#include<stdlib.h>

#include<stdio.h>

#include<string.h>

#include<errno.h>

#include<unistd.h>

#include<sys/msg.h>

struct my_msg_st

{

long int my_msg_type;
char some_text[BUFSIZ];

};

int main()

{

int running = 1;

int msgid;

struct my_msg_st some_data;

long int msg_to_receive = 0;

msgid = msgget((key_t)1234,
0666 | IPC_CREAT);

if (msgid == -1)
{

fprintf(stderr, "failed to get:\n");

exit(EXIT_FAILURE);

}

while (running)

{

if(msgrcv(msgid, (void *)&some_data,

BUFSIZ,msg_to_receive,0) == -1)

 Linux Programming UNIT-IV IV B.Tech I Sem (R15)

Department of CSE, MRCET 13 ||Page

P a g e

{

fprintf(stderr, "failedto receive: \n");
exit(EXIT_FAILURE);

}

printf("You Wrote: %s",

some_data.some_text);

if(strncmp(some_data.some_text, "end", 3)

== 0)

{

running = 0;

}

}

if (msgctl(msgid, IPC_RMID, 0) == -1)

{
fprintf(stderr, "failed to delete\n");

exit(EXIT_FAILURE);

}

exit(EXIT_SUCCESS);

}

//msgq2.c

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <errno.h>

#include <unistd.h>

#include <sys/msg.h>

#define MAX_TEXT 512

struct my_msg_st

{

long int my_msg_type;

char some_text[MAX_TEXT];

};

int main()

{

int running = 1;

struct my_msg_st some_data;

int msgid;

char buffer[BUFSIZ];

msgid = msgget((key_t)1234,

0666 | IPC_CREAT);

if (msgid == -1)

{

 Linux Programming UNIT-IV IV B.Tech I Sem (R15)

Department of CSE, MRCET 14 ||Page

P a g e

fprintf(stderr, "failed to create:\n");
exit(EXIT_FAILURE);

}

while(running)

{
printf("Enter Some Text: ");

fgets(buffer, BUFSIZ, stdin);

some_data.my_msg_type = 1;

strcpy(some_data.some_text, buffer);

if(msgsnd(msgid, (void *)&some_data, MAX_TEXT, 0) == -1)

{

fprintf(stderr, "msgsnd failed\n");

exit(EXIT_FAILURE);

}

if(strncmp(buffer, "end", 3) == 0)

{

running = 0;

}
}

exit(EXIT_SUCCESS);

}

The msgq1.c program will create the message queue using msgget() function.

The msgid identifier is returned by the msgget().The message are received from the queue

using msgrcv() function until the string "end" is encountered. Then the queue is

deletedusing msgctl() function.

The msgq2.c program uses the msgsnd() function to send the entered text to the queue.

Semaphore:

While we are using threads in our programs in multi-user systems, multiprocessing system, or a

combination of two, we may often discover critical sections in the code. This is the section where

we have to ensure that a single process has exclusive access totheresource.

For this purpose the semaphore is used. It allows in managing the access to resource.

To prevent the problem of one program accessing the shared resource simultaneously, we are in

need to generate and use a token which guarantees the access to only one

threadofexecutioninthecriticalsectionatatime.

It is counter variable, which takes only the positive numbers and upon which programs can only

act atomically. The positive number is the value indicating the number of units of the shared

resources are available for sharing.

The common form of semaphore is the binary semaphore, which will control a single resource,

and its value is initialized to 0.

 Linux Programming UNIT-IV IV B.Tech I Sem (R15)

Department of CSE, MRCET 15 ||Page

P a g e

Creation of semaphore:

The shmget() function creates a new semaphore or obtains the semaphore key of an existing

semaphore.

#include<sys/sem.h>

intshmget(key_tkey,intnum_sems,

intsem_flags);

The first parameter, key, is an integral value used to allow unrelated process to access the same

semaphore. The semaphore key is used only by semget. All others use the identifier return by the

semget(). There is a special key value IPC_PRIVATE whichallows to create the semaphore and

to be accessed only by the creating process.

The second parameter is the number of semaphores required, it is almost always 1. The

third parameter is the set of flags. The nine bits are the permissions for the semaphore.

On success it will return a positive value which is the identifier used by the other semaphore

functions. On error, it returns -1.

Changing the value:

The function semop() is used for changing the value of the semaphore.

#include<sys/sem.h>

int semop(int sem_id,struct sembuf

*sem_ops,size_t num-_sem_ops);

The first parameter is the shmid is the identifier returned by the semget().

The second parameter is the pointer to an array of structure. The structure may contain at least

the following members:

struct sembuf{

short sem_num;

short sem_op;

short sem_flg;

}

The first member is the semaphore number, usually 0 unless it is an array of semaphore. The

sem_op is the value by which the semaphore should be changed. Generally it takes -1,which is

operation to wait for a semaphore and +1, which is the operation to signal the availability of

semaphore.

The third parameter, is the flag which is usually set to SET_UNDO. If the process terminates

without releasing the semaphore, this allows to release it automatically.

Controlling the semaphore:

The semctl() function allows direct control of semaphore information.

#include<sys/sem.h>
int semctl(int sem_id,int sem_num,

int command,.../*union semun arg */);

 Linux Programming UNIT-IV IV B.Tech I Sem (R15)

Department of CSE, MRCET 16 ||Page

P a g e

The third parameter is the command, which defines the action to be taken. There are two

common values:

1.) SETVAL: Used for initializing a semaphore to a known value.

2.) IPC_RMID:Deletes the semaphore identifier.

File locking with semaphores

//sem.c

#include <unistd.h>

#include <stdlib.h>

#include <stdio.h>

#include <sys/sem.h>

#include<sys/ipc.h>

#include<sys/types.h>

union semun

{

int val;

struct semid_ds *buf;

unsigned short *array;

};

static void del_semvalue(void);

static int set_semvalue(void);

static int semaphore_p(void);

static int semaphore_v(void);

static int sem_id;

//---------------------------------

static int set_semvalue()

{

union semun sem_union;
sem_union.val = 1;

if (semctl(sem_id, 0, SETVAL, sem_union) == -1) return(0);
return(1);

}

//---

static void del_semvalue()

{

union semun sem_union;
if (semctl(sem_id, 0, IPC_RMID, sem_union) == -1)

fprintf(stderr, "Failed to delete semaphore\n");

}

//--

static int semaphore_p()

{
struct sembuf sem_b;

sem_b.sem_num = 0;

sem_b.sem_op = -1; /* P() */

 Linux Programming UNIT-IV IV B.Tech I Sem (R15)

Department of CSE, MRCET 17 ||Page

P a g e

sem_b.sem_flg = SEM_UNDO;

if (semop(sem_id, &sem_b, 1) == -1)

{
fprintf(stderr, "semaphore_p failed\n");

return(0);

}
return(1);

}

//--

static int semaphore_v()

{

struct sembuf sem_b;

sem_b.sem_num = 0;

sem_b.sem_op = 1; /* V() */

sem_b.sem_flg = SEM_UNDO;

if (semop(sem_id, &sem_b, 1) == -1) {

fprintf(stderr, "semaphore_v failed\n");

return(0);

}

return(1);

}

int main(int argc, char *argv[])

{

int i;

int pause_time;

char op_char = 'O';

srand((unsigned int)getpid());
sem_id = semget((key_t)1234, 1, 0666 | IPC_CREAT);

if (argc > 1)

{

if (!set_semvalue())

{

fprintf(stderr, "Failed to initialize semaphore\n");

exit(EXIT_FAILURE);

}
op_char = 'X';

sleep(2);

}

for(i = 0; i < 10; i++)

{

if (!semaphore_p()) exit(EXIT_FAILURE);

printf("%c", op_char);

fflush(stdout);

pause_time = rand() % 3;

sleep(pause_time);

printf("%c", op_char);fflush(stdout);

if (!semaphore_v()) exit(EXIT_FAILURE);

 Linux Programming UNIT-IV IV B.Tech I Sem (R15)

Department of CSE, MRCET 18 ||Page

P a g e

pause_time = rand() % 2;

sleep(pause_time);

}
printf("\n%d - finished\n", getpid());

if (argc > 1)

{

sleep(10);

del_semvalue();

}
exit(EXIT_SUCCESS);

}

The function set_semvalue() initializes the semaphore using the SETVAL command

in semctl()function. But this is to be done before the usage of semaphore.

The function del_semvalue() is used to delete the semaphore by using the

command IPC_RMID in the semctl() function. The function semaphore_p() changes the

semaphore value to -1, which is used to make the process to wait.

In the function semaphore_v(),the semop member of the structure sembuf is set to 1.By this the

semphore becomes available for the other processes because it is released.

Department of CSE, MRCET 1 |Page

 Linux Programming UNIT-V IV B.Tech I Sem (R15)

UNIT V

Shared Memory and Sockets

Shared Memory

Kernel support for shared memory

APIs for shared memory,

Shared Memory example.

Sockets

Introduction to Berkeley Sockets

IPC over a network

Client/server model

Socket Address structures (UNIX domain & internet domain)

Socket system calls for connection oriented protocol and connectionless protocol

Example-client/server programs- single client/server connection, Multiple

simultaneous clients

Socket options

setsockopt

fcntl system calls

Comparision of IPC mechanisms.

Department of CSE, MRCET 2 |Page

 Linux Programming UNIT-V IV B.Tech I Sem (R15)

Shared Memory:

Shared memory is a highly efficient way of data sharing between the running programs. It allows

two unrelated processes to access the same logical memory. It is the fastest form of IPC because

all processes share the same piece of memory. It also avoidscopyingdataunnecessarily.

As kernel does not synchronize the processes, it should be handled by the user. Semaphore can

also be used to synchronize the access to shared memory.

Usageofsharedmemory:

To use the shared memory, first of all one process should allocate the segment, and then each

process desiring to access the segment should attach the segment. After accessing the segment,

each process should detach it. It is also necessary to deallocate thesegmentwithoutfail.

Allocating the shared memory causes virtual pages to be created. It is important to note that

allocating the existing segment would not create new pages, but will return

theidentifierfortheexistingpages.

All the shared memory segments are allocated as the integral multiples of the system's page size,

which is the number of bytes in a page of memory.

Unix kernel support for shared memory

 There is a shared memory table in the kernel address space that keeps track of all shared

memory regions created in the system.

 Each entry of the tables store the following data:

1. Name

2. Creator user ID and group ID.

3. Assigned owner user ID and group ID.

4. Read-write access permission of the region.

5. The time when the last process attached to the region.

6. The time when the last process detached from the region.

7. The time when the last process changed control data of the region.

8. The size, in no. of bytes of the region.

UNIX APIs for shared memory

shmget

 Open and create a shared memory.

 Function prototype:

#include<sys/types.h>

#include<sys/ipc.h>

#include<sys/shm.h>

Department of CSE, MRCET 3 |Page

 Linux Programming UNIT-V IV B.Tech I Sem (R15)

int shmget (key_t key, int size, int flag);

 Function returns a positive descriptor if it succeeds or -1 if it fails.

Shmat

 Attach a shared memory to a process virtual address space.

 Function prototype:

#include<sys/types.h>

#include<sys/ipc.h>

#include<sys/shm.h>

void * shmat (int shmid, void *addr, int flag);

 Function returns the mapped virtual address of he shared memory if it succeeds or -1 if it

fails.

Shmdt

 Detach a shared memory from the process virtual address space.

 Function prototype:

#include<sys/types.h>

#include<sys/ipc.h>

#include<sys/shm.h>

int shmdt (void *addr);

 Function returns 0 if it succeeds or -1 if it fails.

Shmctl

 Query or change control data of a shared memory or delete the memory.

 Function prototype:

#include<sys/types.h>

#include<sys/ipc.h>

#include<sys/shm.h>

int shmctl (int shmid, int cmd, struct shmid_ds *buf);

 Function returns 0 if it succeeds or -1 if it fails.

Department of CSE, MRCET 4 |Page

 Linux Programming UNIT-V IV B.Tech I Sem (R15)

Shared memory Example

//shmry1.c

#include<unistd.h>

#include<stdlib.h>

#include<stdio.h>

#include<string.h>

#include<sys/shm.h>

#define TEXT_SZ 2048

struct shared_use_st

{

int written_by_you;

char some_text[TEXT_SZ];

};

int main()

{

int running = 1;

void *shared_memory = (void *)0;

struct shared_use_st *shared_stuff;

int shmid;

srand((unsigned int)getpid());

shmid = shmget((key_t)1234,

sizeof(struct shared_use_st),

0666 |IPC_CREAT);

if (shmid == -1)

{

fprintf(stderr, "shmget failed\n");

exit(EXIT_FAILURE);

}

shared_memory = shmat(shmid,(void *)0, 0);

if (shared_memory == (void *)-1)

{
fprintf(stderr, "shmat failed\n");

exit(EXIT_FAILURE);

}

printf("Memory Attached at %x\n",

(int)shared_memory);

shared_stuff = (struct shared_use_st *)

shared_memory;

shared_stuff->written_by_you = 0;

while(running)

{

if(shared_stuff->written_by_you)

{

Department of CSE, MRCET 5 |Page

 Linux Programming UNIT-V IV B.Tech I Sem (R15)

printf("You Wrote: %s",

shared_stuff->some_text);

sleep(rand() %4);

shared_stuff->written_by_you = 0;

if (strncmp(shared_stuff->some_text,

"end", 3)== 0)

{

running = 0;

}

}

}

if (shmdt(shared_memory) == -1)

{
fprintf(stderr, "shmdt failed\n");

exit(EXIT_FAILURE);

}

if (shmctl(shmid, IPC_RMID, 0) == -1)

{

fprintf(stderr, "failed to delete\n");

exit(EXIT_FAILURE);

}

exit(EXIT_SUCCESS);

}

//shmry2.c

#include<unistd.h>

#include<stdlib.h>

#include<stdio.h>

#include<string.h>

#include<sys/shm.h>

#define TEXT_SZ 2048

struct shared_use_st

{
int written_by_you;
char some_text[TEXT_SZ];

};

int main()

{

int running =1
void *shared_memory = (void *)0;

struct shared_use_st *shared_stuff;

char buffer[BUFSIZ];

Department of CSE, MRCET 6 |Page

 Linux Programming UNIT-V IV B.Tech I Sem (R15)

int shmid;

shmid =shmget((key_t)1234,

sizeof(struct shared_use_st),

0666 | IPC_CREAT);

if (shmid == -1)

{

fprintf(stderr, "shmget failed\n");

exit(EXIT_FAILURE);

}

shared_memory=shmat(shmid,

(void *)0, 0);

if (shared_memory == (void *)-1)
{
fprintf(stderr, "shmat failed\n");

exit(EXIT_FAILURE);

}

printf("Memory Attached at %x\n", (int) shared_memory);

shared_stuff = (struct shared_use_st *)shared_memory;

while(running)

{

while(shared_stuff->written_by_you== 1)
{

sleep(1);

printf("waiting for client....\n");

}

printf("Enter Some Text: ");

fgets (buffer, BUFSIZ, stdin);

strncpy(shared_stuff->some_text, buffer,

TEXT_SZ);

shared_stuff->written_by_you = 1;

if(strncmp(buffer, "end", 3) == 0)

{

running = 0;

}

}

if (shmdt(shared_memory) == -1)

{

fprintf(stderr, "shmdt failed\n");

exit(EXIT_FAILURE);

}

exit(EXIT_SUCCESS);

}

The shmry1.c program will create the segment using shmget() function and returns the identifier

shmid. Then that segment is attached to its address space using shmat() function.

The structure share_use_st consists of a flag written_by_you is set to 1 when data is available.

When it is set, program reads the text, prints it and clears it to show it has read the data. The

string end is used to quit from the loop. After this the segment is detached and deleted.

Department of CSE, MRCET 7 |Page

 Linux Programming UNIT-V IV B.Tech I Sem (R15)

The shmry2.c program gets and attaches to the same memory segment. This is possible with the

help of same key value 1234 used in the shmget() function. If the written_by_you text is set, the

process will wait until the previous process reads it. When the flag is cleared, the data is written

and sets the flag. This program too will use the string "end" to terminate. Then the segment is

detached.

5.2 Sockets

A socket is a bidirectional communication device that can be used to communicate withanother

process on the same machine or with a process running on other machines.Sockets are the only

interprocess communication we‟ll discuss in this chapter thatpermit communication between

processes on different computers. Internet programs such as Telnet, rlogin, FTP, talk, and the

World Wide Web use sockets.

For example, you can obtain the WWW page from a Web server using theTelnet program

because they both use sockets for network communications.To open a connection to a WWW

server at www.codesourcery.com, use telnet www.codesourcery.com 80.The magic constant 80

specifies a connection to the Web server programming running www.codesourcery.com instead

of some other process.Try typing GET / after the connection is established.This sends a message

through the socket to the Web server, which replies by sending the home page‟s HTML source

and then closing the connection—for example:

% telnet www.codesourcery.com 80

Trying 206.168.99.1...

Connected to merlin.codesourcery.com (206.168.99.1).

Escape character is „^]‟.

GET /
<html>

<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=iso-8859-1”>

...

3. Note that only Windows NT can create a named pipe;Windows 9x programs can form only

client connections.

4. Usually, you‟d use telnet to connect a Telnet server for remote logins. But you can also use

telnet to connect to a server of a different kind and then type comments directly at it.

Introduction to Berkeley sockets

Berkeley sockets (or BSD sockets) is a computing library with an application programming

interface (API) for internet sockets and Unix domain sockets, used for inter-process

communication (IPC).

This list is a summary of functions or methods provided by the Berkeley sockets API

library:

 socket() creates a new socket of a certain socket type, identified by an integer number,

and allocates system resources to it.

 bind() is typically used on the server side, and associates a socket with a socket address

structure, i.e. a specified local port number and IP address.

 listen() is used on the server side, and causes a bound TCP socket to enter listening state.

 connect() is used on the client side, and assigns a free local port number to a socket. In

case of a TCP socket, it causes an attempt to establish a new TCP connection.

http://www.codesourcery.com/
http://www.codesourcery.com/
http://www.codesourcery.com/
http://www.codesourcery.com/
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Internet_socket
https://en.wikipedia.org/wiki/Unix_domain_socket
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Inter-process_communication

Department of CSE, MRCET 8 |Page

 Linux Programming UNIT-V IV B.Tech I Sem (R15)

 accept() is used on the server side. It accepts a received incoming attempt to create a new

TCP connection from the remote client, and creates a new socket associated with the

socket address pair of this connection.

 send() and recv(), or write() and read(), or sendto() and recvfrom(), are used for sending
and receiving data to/from a remote socket.

 close() causes the system to release resources allocated to a socket. In case of TCP, the

connection is terminated.

 gethostbyname() and gethostbyaddr() are used to resolve host names and addresses. IPv4
only.

 select() is used to pend, waiting for one or more of a provided list of sockets to be ready

to read, ready to write, or that have errors.

 poll() is used to check on the state of a socket in a set of sockets. The set can be tested to

see if any socket can be written to, read from or if an error occurred.

 getsockopt() is used to retrieve the current value of a particular socket option for the

specified socket.

 setsockopt() is used to set a particular socket option for the specified socket.

IPC over a network

Socket Concepts

When you create a socket, you must specify three parameters:

 communication style,

 namespace,

 protocol.

A communication style controls how the socket treats transmitted data and specifies

the number of communication partners.When data is sent through a socket, it is ackaged into

chunks called packets.The communication style determines how these

packets are handled and how they are addressed from the sender to the receiver.

Connection styles guarantee delivery of all packets in the order they were sent. If

packets are lost or reordered by problems in the network, the receiver automatically

requests their retransmission from the sender.

A connection-style socket is like a telephone call:The addresses of the sender

and receiver are fixed at the beginning of the communication when the connection

is established.

Datagram styles do not guarantee delivery or arrival order. Packets may be lost or

reordered in transit due to network errors or other conditions. Each packet must

be labeled with its destination and is not guaranteed to be delivered.The system

guarantees only “best effort,” so packets may disappear or arrive in a different

order than shipping.

A datagram-style socket behaves more like postal mail.The sender specifies the

receiver‟s address for each individual message.

A socket namespace specifies how socket addresses are written. A socket address identifies one

end of a socket connection. For example, socket addresses in the “local namespace” are ordinary

filenames. In “Internet namespace,” a socket address is composed of the Internet address (also

known as an Internet Protocol address or IP address) of a host attached to the network and a

port number.The port number distinguishes among multiple sockets on the same host.A protocol

specifies how data is transmitted. Some protocols are TCP/IP, the primary networking protocols

used by the Internet; the AppleTalk network protocol; and the UNIX local communication

protocol. Not all combinations of styles, namespaces,and protocols are supported.

Department of CSE, MRCET 9 |Page

 Linux Programming UNIT-V IV B.Tech I Sem (R15)

Client-server datagram socket — example

To experiment with datagram sockets in the UNIX domain we will write a client/server

application where:

 the client takes a number of arguments on its command line and send them to the server

using separate datagrams

 for each datagram received, the server converts it to uppercase and send it back to the
client

 the client prints server replies to standard output

For this to work we will need to bind all involved sockets to pathnames.

Client-server datagram socket example — protocol

#include <ctype .h>

#include <sys/un.h>

#include <sys/socket .h>

#include <unistd .h>

#include " helpers .h"

#define SRV_SOCK_PATH " /tmp/uc_srv_socket "

#define CLI_SOCK_PATH " /tmp/ uc_cl i_socket .%ld "
#define MSG_LEN 10

#include "uc�proto .h"
int main(int argc , char *argv []) {

struct sockaddr_un srv_addr , cl i_addr ;

int srv_fd , i ;

ssize_t bytes ;

socklen_t len ;

char buf [MSG_LEN] ;
i f ((srv_fd = socket (AF_UNIX , SOCK_DGRAM, 0)) < 0)

err_sys (" socket error ") ;

memset(&srv_addr , 0, sizeof (struct sockaddr_un)) ;

srv_addr . sun_family = AF_UNIX ;

strncpy (srv_addr . sun_path , SRV_SOCK_PATH,

sizeof (srv_addr . sun_path) �1) ;

i f (access (srv_addr . sun_path , F_OK) == 0)

unlink (srv_addr . sun_path) ;

i f (bind (srv_fd , (struct sockaddr *) &srv_addr ,

sizeof (struct sockaddr_un)) < 0)

err_sys (" bind error ") ;

for (; ;) {

len = sizeof (struct sockaddr_un) ;
i f ((bytes = recvfrom(srv_fd , buf , MSG_LEN, 0,

(struct sockaddr *) &cl i_addr , &len)) < 1)

err_sys (" recvfrom error ") ;

pr int f (" server received %ld bytes from %s\n" ,

(long) bytes , cl i_addr . sun_path) ;

for (i = 0; i < bytes ; i ++)

buf [i] = toupper ((unsigned char) buf [i]) ;

i f (sendto (srv_fd , buf , bytes , 0,

(struct sockaddr *) &cl i_addr , len) != bytes)
err_sys (" sendto error ") ;

}
}

Department of CSE, MRCET 10 |Page

 Linux Programming UNIT-V IV B.Tech I Sem (R15)

#include "uc�proto .h"
int main(int argc , char *argv []) {

struct sockaddr_un srv_addr , cl i_addr ;

int srv_fd , i ;

size_t len ;

ssize_t bytes ;

char resp [MSG_LEN] ;

i f (argc < 2)

er r_qui t ("Usage : uc�c l ient MSG. . . ") ;

i f ((srv_fd = socket (AF_UNIX , SOCK_DGRAM, 0)) < 0)

err_sys (" socket error ") ;

memset(&cl i_addr , 0, sizeof (struct sockaddr_un)) ;

cl i_addr . sun_family = AF_UNIX ;

snpr int f (cl i_addr . sun_path , sizeof (cl i_addr . sun_path) ,

CLI_SOCK_PATH, (long) getpid ()) ;

i f (bind (srv_fd , (struct sockaddr *) &cl i_addr ,

sizeof (struct sockaddr_un)) == �1)

err_sys (" bind error ") ;

Notes:

the server is persistent and processes one datagram at a time, no matter the client rocess, i.e.
there is no notion of connection messages larger than 10 bytes are silently truncated

Socket address structures(UNIX domain & Internet domain)

UNIX domain Sockets:

We now want to give an example of stream sockets. To do so, we can longer remain in the

abstract of general sockets, but we need to pick a domain. We pick the UNIX domain. In the

UNIX domain, addresses are pathnames. The corresponding Cstructure is sockaddr_un:

struct sockaddr_un {

sa_fami ly_t sun_family ; /* = AF_UNIX */

char sun_path[108] ; /* socket pathname,

NULL�terminated */

}
The field sun_path contains a regular pathname, pointing to a special file of type socket (. pipe)

which will be created at bind time.

During communication the file will have no content, it is used only as a rendez-vous point

between processes.

Internet-Domain Sockets

UNIX-domain sockets can be used only for communication between two processes on the same

computer. Internet-domain sockets, on the other hand, may be used to connect processes on

different machines connected by a network.

Sockets connecting processes through the Internet use the Internet namespace represented by

PF_INET.The most common protocols are TCP/IP.The Internet Protocol (IP), a low-level

protocol, moves packets through the Internet, splitting and rejoining the packets, if necessary. It

guarantees only “best-effort” delivery, so packets may vanish or be reordered during transport.

Every participating computer is specified using a unique IP number.

Department of CSE, MRCET 11 |Page

 Linux Programming UNIT-V IV B.Tech I Sem (R15)

The Transmission Control Protocol (TCP), layered on top of IP, provides reliable connection-

ordered transport. It permits telephone-like connections to be established between computers and

ensures that data is delivered reliably and inorder.

DNS Names

Because it is easier to remember names than numbers, the Domain Name Service (DNS)

associates names such as www.codesourcery.com with computers‟ unique IP numbers. DNS is

implemented by a worldwide hierarchy of name servers, but you don‟t need to understand DNS

protocols to use Internet host names in your programs.

Internet socket addresses contain two parts: a machine and a port number.This information is

stored in a struct sockaddr_in variable. Set the sin_family field to AF_INET to indicate that this

is an Internet namespace address.The sin_addr field stores the Internet address of the desired

machine as a 32-bit integer IP number.A port number distinguishes a given machine‟s different

sockets. Because different machines store multibyte values in different byte orders, use htons to

convert the port number to

network byte order. See the man page for ip for more information.To convert human-readable

hostnames, either numbers in standard dot notation (such as 10.0.0.1) or DNS names (such as

www.codesourcery.com) into 32-bit IP numbers, you can use gethostbyname.This returns a

pointer to the struct hostent structure; the h_addr field contains the host‟s IP number.

System Calls

Sockets are more flexible than previously discussed communication techniques.These

are the system calls involving sockets:

socket—Creates a socket

closes—Destroys a socket

connect—Creates a connection between two sockets

bind—Labels a server socket with an address

listen—Configures a socket to accept conditions
accept—Accepts a connection and creates a new socket for the connection

Sockets are represented by file descriptors.

Creating and Destroying Sockets

Sockets are IPC objects that allow to exchange data between processes running:

either on the same machine (host), or on different ones over a network.

The UNIX socket API first appeared in 1983 with BSD 4.2. It has been finally standardized for

the first time in POSIX.1g (2000), but has been ubiquitous to every UNIX implementation since

the 80s.

The socket API is best discussed in a network programming course,which this one is not. We

will only address enough general socketconcepts to describe how to use a specific socket family:

UNIXdomain sockets.

Connection Oriented Protocol

http://www.codesourcery.com/

Department of CSE, MRCET 12 |Page

 Linux Programming UNIT-V IV B.Tech I Sem (R15)

Connectionless Protocol

Client-server setup

Let‟s consider a typical client-server application scenario — no matter if they are located on the

same or different hosts.

Sockets are used as follows:

each application: create a socket

idea: communication between the two applications will flow through an imaginary “pipe” that

will connect the two sockets together

server: bind its socket to a well-known address

we have done the same to set up rendez-vous points for other IPC objects.

e.g. FIFOs
client: locate server socket (via its well-known address) and “initiate communication”1 with the

server.

Socket options:

 In order to tell the socket to get the information about the packet destination, we should call

 setsockopt().

setsockopt() and getsockopt() - set and get options on a

socket. Both methods return 0 on success and -1 on error.

Prototype: int setsockopt(int sockfd, int level, int optname,...

There are two levels of socket options:

To manipulate options at the sockets API level: SOL_SOCKET
To manipulate options at a protocol level, that protocol number should be used;

for example, for UDP it is IPPROTO_UDP or SOL_UDP (both are equal 17) ; see

include/linux/in.h and include/linux/socket.h

● SOL_IP is 0.
● There are currently 19 Linux socket options and one another on option for BSD

compatibility.

● There is an option called IP_PKTINFO.

We will set the IP_PKTINFO option on a socket in the following example.

// from /usr/include/bits/in.h

#define IP_PKTINFO 8 /* bool */

/* Structure used for IP_PKTINFO. */

Department of CSE, MRCET 13 |Page

 Linux Programming UNIT-V IV B.Tech I Sem (R15)

struct in_pktinfo

{

int ipi_ifindex; /* Interface index */

struct in_addr ipi_spec_dst; /* Routing destination address */

struct in_addr ipi_addr; /* Header destination address */

};

const int on = 1;
sockfd = socket(AF_INET, SOCK_DGRAM,0);

if (setsockopt(sockfd, SOL_IP, IP_PKTINFO, &on,

sizeof(on))<0)

perror("setsockopt");

...

...

...
When calling recvmsg(), we will parse the msghr like this:

for (cmptr=CMSG_FIRSTHDR(&msg); cmptr!=NULL;

cmptr=CMSG_NXTHDR(&msg,cmptr))

{

if (cmptr->cmsg_level == SOL_IP && cmptr->cmsg_type ==IP_PKTINFO)

{

pktinfo = (struct in_pktinfo*)CMSG_DATA(cmptr);

printf("destination=%s\n", inet_ntop(AF_INET, &pktinfo->ipi_addr,str, sizeof(str)));

}

}
In the kernel, this calls ip_cmsg_recv() in

net/ipv4/ip_sockglue.c. (which eventually calls

ip_cmsg_recv_pktinfo()).

● You can in this way retrieve other fields of the ip header:

For getting the TTL:

● setsockopt(sockfd, SOL_IP, IP_RECVTTL, &on, sizeof(on))<0).
● But: cmsg_type == IP_TTL.

For getting ip_options:

● setsockopt() with IP_OPTIONS.

fcntl system calls

The fcntl system call provides further ways to manipulate low level file descriptors.

It can perform miscellaneous operations on open file descriptors.

The call,

Department of CSE, MRCET 14 |Page

 Linux Programming UNIT-V IV B.Tech I Sem (R15)

returns a new file descriptor with a numerical value equal to or greater than the integer newfd.

The call,

returns the file descriptor flags as defined in fcntl.h.

The call,

is used to set the file descriptor flags, usually just FD_CLOEXEC.

The calls,

respectively get and set the file status flags and access modes.

5.9 Comparision of IPC mechanisms.

IPC mechanisms are mianly 5 types

1. pipes:it is related data only send from one pipe output is giving to another pipe input to share
resouses pipe are used drawback:itis only related process only communicated

2. message queues:message queues are un related process are also communicate with message
queues.

3. sockets:sockets also ipc it is comunicate clients and server
with socket system calls connection oriented and connection less also
4. PIPE: Only two related (eg: parent & child) processess can be communicated. Data reading

would be first in first out manner.

Named PIPE or FIFO : Only two processes (can be related or unrelated) can communicate. Data

read from FIFO is first in first out manner.

5. Message Queues: Any number of processes can read/write from/to the queue. Data can be

read selectively. (need not be in FIFO manner)

6. Shared Memory: Part of process's memory is shared to other processes. other processes can

read or write into this shared memory area based on the permissions. Accessing Shared memory

is faster than any other IPC mechanism as this does not involve any kernel level

switching(Shared memory resides on user memory area).

7. Semaphore: Semaphores are used for process synchronisation. This can't be used for bulk data

transfer between processes.

